README.md 11.7 KB
Newer Older
1 2 3 4 5 6 7
>运行该示例前请安装Paddle1.6或更高版本

# 分类模型量化压缩示例

## 概述

该示例使用PaddleSlim提供的[量化压缩策略](https://github.com/PaddlePaddle/models/blob/develop/PaddleSlim/docs/tutorial.md#1-quantization-aware-training%E9%87%8F%E5%8C%96%E4%BB%8B%E7%BB%8D)对分类模型进行压缩。
B
Bai Yifan 已提交
8 9
>本文默认使用ILSVRC2012数据集,数据集存放在`models/PaddleSlim/data/`路径下, 可以参考[数据准备](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification#数据准备)在执行训练脚本run.sh前配置好您的数据集

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
在阅读该示例前,建议您先了解以下内容:

- [分类模型的常规训练方法](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification)
- [PaddleSlim使用文档](https://github.com/PaddlePaddle/models/blob/develop/PaddleSlim/docs/usage.md)


## 配置文件说明

关于配置文件如何编写您可以参考:

- [PaddleSlim配置文件编写说明](https://github.com/PaddlePaddle/models/blob/develop/PaddleSlim/docs/usage.md#122-%E9%85%8D%E7%BD%AE%E6%96%87%E4%BB%B6%E7%9A%84%E4%BD%BF%E7%94%A8)
- [量化策略配置文件编写说明](https://github.com/PaddlePaddle/models/blob/develop/PaddleSlim/docs/usage.md#21-%E9%87%8F%E5%8C%96%E8%AE%AD%E7%BB%83)

其中save_out_nodes需要传入分类概率结果的Variable的名称,下面介绍如何确定save_out_nodes的参数
以MobileNet V1为例,可在compress.py中构建好网络之后,直接打印Variable得到Variable的名称信息。
代码示例:
```
#model definition, args.model=MobileNet
model = models.__dict__[args.model]()
out = model.net(input=image, class_dim=1000)
print(out)
cost = fluid.layers.cross_entropy(input=out, label=label)
```
根据运行结果可看到Variable的名字为:`fc_0.tmp_2`
## 训练

根据 [PaddleCV/image_classification/train.py](https://github.com/PaddlePaddle/models/blob/develop/PaddleCV/image_classification/train.py) 编写压缩脚本compress.py。
在该脚本中定义了Compressor对象,用于执行压缩任务。

可以通过命令`python compress.py`用默认参数执行压缩任务,通过`python compress.py --help`查看可配置参数,简述如下:

- use_gpu: 是否使用gpu。如果选择使用GPU,请确保当前环境和Paddle版本支持GPU。默认为True。
L
Liufang Sang 已提交
42
- batch_size: 在量化之后,对模型进行fine-tune训练时用的batch size。
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
- model: 要压缩的目标模型,该示例支持'MobileNet', 'MobileNetV2'和'ResNet50'。
- pretrained_model: 预训练模型的路径,可以从[这里](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification#%E5%B7%B2%E5%8F%91%E5%B8%83%E6%A8%A1%E5%9E%8B%E5%8F%8A%E5%85%B6%E6%80%A7%E8%83%BD)下载。
- config_file: 压缩策略的配置文件。

您可以通过运行脚本`run.sh`运行该示例,请确保已正确下载[pretrained model](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification#%E5%B7%B2%E5%8F%91%E5%B8%83%E6%A8%A1%E5%9E%8B%E5%8F%8A%E5%85%B6%E6%80%A7%E8%83%BD)

### 训练时的模型结构
这部分介绍来源于[量化low-level API介绍](https://github.com/PaddlePaddle/models/tree/develop/PaddleSlim/quant_low_level_api#1-%E9%87%8F%E5%8C%96%E8%AE%AD%E7%BB%83low-level-apis%E4%BB%8B%E7%BB%8D)

PaddlePaddle框架中有四个和量化相关的IrPass, 分别是QuantizationTransformPass、QuantizationFreezePass、ConvertToInt8Pass以及TransformForMobilePass。在训练时,对网络应用了QuantizationTransformPass,作用是在网络中的conv2d、depthwise_conv2d、mul等算子的各个输入前插入连续的量化op和反量化op,并改变相应反向算子的某些输入。示例图如下:

<p align="center">
<img src="../../docs/images/usage/TransformPass.png" height=400 width=520 hspace='10'/> <br />
<strong>图1:应用QuantizationTransformPass后的结果</strong>
</p>

### 保存断点(checkpoint)

如果在配置文件中设置了`checkpoint_path`, 则在压缩任务执行过程中会自动保存断点,当任务异常中断时,
重启任务会自动从`checkpoint_path`路径下按数字顺序加载最新的checkpoint文件。如果不想让重启的任务从断点恢复,
需要修改配置文件中的`checkpoint_path`,或者将`checkpoint_path`路径下文件清空。

>注意:配置文件中的信息不会保存在断点中,重启前对配置文件的修改将会生效。

67 68
### 保存评估和预测模型
如果在配置文件的量化策略中设置了`float_model_save_path`, `int8_model_save_path`, `mobile_model_save_path`, 在训练结束后,会保存模型量化压缩之后用于评估和预测的模型。接下来介绍这三种模型的区别。
69

70 71
#### FP32模型
在介绍量化训练时的模型结构时介绍了PaddlePaddle框架中有四个和量化相关的IrPass, 分别是QuantizationTransformPass、QuantizationFreezePass、ConvertToInt8Pass以及TransformForMobilePass。FP32预测模型是在应用QuantizationFreezePass并删除eval_program中多余的operators之后,保存的模型。
72 73 74 75 76 77 78 79

QuantizationFreezePass主要用于改变IrGraph中量化op和反量化op的顺序,即将类似图1中的量化op和反量化op顺序改变为图2中的布局。除此之外,QuantizationFreezePass还会将`conv2d``depthwise_conv2d``mul`等算子的权重离线量化为int8_t范围内的值(但数据类型仍为float32),以减少预测过程中对权重的量化操作,示例如图2:

<p align="center">
<img src="../../docs/images/usage/FreezePass.png" height=400 width=420 hspace='10'/> <br />
<strong>图2:应用QuantizationFreezePass后的结果</strong>
</p>

80
#### 8-bit模型
81 82 83 84 85 86 87 88
在对训练网络进行QuantizationFreezePass之后,执行ConvertToInt8Pass,
其主要目的是将执行完QuantizationFreezePass后输出的权重类型由`FP32`更改为`INT8`。换言之,用户可以选择将量化后的权重保存为float32类型(不执行ConvertToInt8Pass)或者int8_t类型(执行ConvertToInt8Pass),示例如图3:

<p align="center">
<img src="../../docs/images/usage/ConvertToInt8Pass.png" height=400 width=400 hspace='10'/> <br />
<strong>图3:应用ConvertToInt8Pass后的结果</strong>
</p>

89
####  mobile模型
90 91 92 93 94 95 96
经TransformForMobilePass转换后,用户可得到兼容[paddle-lite](https://github.com/PaddlePaddle/Paddle-Lite)移动端预测库的量化模型。paddle-mobile中的量化op和反量化op的名称分别为`quantize``dequantize``quantize`算子和PaddlePaddle框架中的`fake_quantize_abs_max`算子簇的功能类似,`dequantize` 算子和PaddlePaddle框架中的`fake_dequantize_max_abs`算子簇的功能相同。若选择paddle-mobile执行量化训练输出的模型,则需要将`fake_quantize_abs_max`等算子改为`quantize`算子以及将`fake_dequantize_max_abs`等算子改为`dequantize`算子,示例如图4:

<p align="center">
<img src="../../docs/images/usage/TransformForMobilePass.png" height=400 width=400 hspace='10'/> <br />
<strong>图4:应用TransformForMobilePass后的结果</strong>
</p>

97 98 99 100 101 102 103 104 105 106 107 108
## 评估

### 每个epoch保存的评估模型
因为量化的最终模型只有在end_epoch时保存一次,不能保证保存的模型是最好的,因此
如果在配置文件中设置了`checkpoint_path`,则每个epoch会保存一个量化后的用于评估的模型,
该模型会保存在`${checkpoint_path}/${epoch_id}/eval_model/`路径下,包含`__model__``__params__`两个文件。
其中,`__model__`用于保存模型结构信息,`__params__`用于保存参数(parameters)信息。模型结构和训练时一样。

如果不需要保存评估模型,可以在定义Compressor对象时,将`save_eval_model`选项设置为False(默认为True)。

脚本<a href="../eval.py">PaddleSlim/classification/eval.py</a>中为使用该模型在评估数据集上做评估的示例。

109
在评估之后,选取效果最好的epoch的模型,可使用脚本 <a href='./freeze.py'>PaddleSlim/classification/freeze.py</a>将该模型转化为以上介绍的三种模型:FP32模型,8-bit模型,mobile模型,需要配置的参数为:
110 111 112

- model_path, 加载的模型路径,`为${checkpoint_path}/${epoch_id}/eval_model/`
- weight_quant_type 模型参数的量化方式,和配置文件中的类型保持一致
113
- save_path `FP32`, `8-bit`, `mobile`模型的保存路径,分别为 `${save_path}/float/`, `${save_path}/int8/`, `${save_path}/mobile/`
114 115

### 最终评估模型
116
最终使用的评估模型是FP32模型,使用脚本<a href="../eval.py">PaddleSlim/classification/eval.py</a>中为使用该模型在评估数据集上做评估的示例。
117 118 119

## 预测

120 121
### python预测

122
FP32模型可直接使用原生PaddlePaddle Fluid预测方法进行预测。
123 124 125 126

在脚本<a href="../infer.py">PaddleSlim/classification/infer.py</a>中展示了如何使用fluid python API加载使用预测模型进行预测。

### PaddleLite预测
127
FP32模型可使用Paddle-Lite进行加载预测,可参见教程[Paddle-Lite如何加载运行量化模型](https://github.com/PaddlePaddle/Paddle-Lite/wiki/model_quantization)
L
Liufang Sang 已提交
128 129

mobile预测模型兼容Paddle-Lite(Paddle-Mobile的升级版), 使用方法可参考[Paddle-Lite文档](https://paddlepaddle.github.io/Paddle-Lite/).
130 131 132 133 134 135


## 示例结果

### MobileNetV1

136 137 138 139 140 141
| weight量化方式 | activation量化方式| top1_acc/top5_acc |Paddle Fluid inference time(ms)| Paddle Lite inference time(ms)| 模型下载|
|---|---|---|---|---| ---|
|baseline|- |70.99%/89.68%|- |-| [下载模型](http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar)|
|abs_max|abs_max|70.74%/89.55% |- |-| [下载模型](https://paddle-slim-models.bj.bcebos.com/quantization%2Fmobilenetv1_w_abs_a_abs_7074_8955.tar.gz)|
|abs_max|moving_average_abs_max|70.89%/89.67% |- |-| [下载模型](https://paddle-slim-models.bj.bcebos.com/quantization%2Fmobilenetv1_w_abs_a_move_7089_8967.tar.gz)|
|channel_wise_abs_max|abs_max|70.93%/89.65% |- |-|[下载模型](https://paddle-slim-models.bj.bcebos.com/quantization%2Fmobilenetv1_w_chan_a_abs_7093_8965.tar.gz)|
142 143 144

>训练超参:

145 146 147 148 149 150 151 152
优化器
```
fluid.optimizer.Momentum(momentum=0.9,
                         learning_rate=fluid.layers.piecewise_decay(
                         boundaries=[5000 * 12],
                         values=[0.0001, 0.00001]),
                         regularization=fluid.regularizer.L2Decay(1e-4))
```
153
8卡,batch size 1024,epoch 30, 挑选好的结果
154

155 156 157 158 159 160 161 162 163 164 165 166 167
### MobileNetV2

| weight量化方式 | activation量化方式| top1_acc/top5_acc |Paddle Fluid inference time(ms)| Paddle Lite inference time(ms)|
|---|---|---|---|---|
|baseline|- |72.15%/90.65%|- |-|
|abs_max|abs_max|- |- |-|
|abs_max|moving_average_abs_max|- |- |-|
|channel_wise_abs_max|abs_max|- |- |-|

>训练超参:

### ResNet50

168 169 170 171 172 173
| weight量化方式 | activation量化方式| top1_acc/top5_acc |Paddle Fluid inference time(ms)| Paddle Lite inference time(ms)|模型下载|
|---|---|---|---|---|---|
|baseline|- |76.50%/93.00%|- |-|[下载模型](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar)|
|abs_max|abs_max|76.71%/93.10% |- |-|[下载模型](https://paddle-slim-models.bj.bcebos.com/quantization%2Fresnet50_w_abs_a_abs_7670_9310.tar.gz)|
|abs_max|moving_average_abs_max|76.65%/93.12% |- |-|[下载模型](https://paddle-slim-models.bj.bcebos.com/quantization%2Fresnet50_w_abs_a_move_7665_9312.tar.gz) |
|channel_wise_abs_max|abs_max|76.56%/93.05% |- |-| [下载模型](https://paddle-slim-models.bj.bcebos.com/quantization%2Fresnet50_w_chan_a_abs_7656_9304.tar.gz)|
174 175 176

>训练超参:

177 178 179 180 181 182 183 184
优化器
```
fluid.optimizer.Momentum(momentum=0.9,
                         learning_rate=fluid.layers.piecewise_decay(
                         boundaries=[5000 * 12],
                         values=[0.0001, 0.00001]),
                         regularization=fluid.regularizer.L2Decay(1e-4))
```
185 186
8卡,batch size 1024,epoch 30, 挑选好的结果

187

188
## FAQ