infer.py 2.7 KB
Newer Older
K
kbChen 已提交
1 2 3 4
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

5 6
import os
import sys
K
kbChen 已提交
7 8 9 10 11
import math
import time
import argparse
import functools
import numpy as np
12 13 14
import paddle
import paddle.fluid as fluid
import models
K
kbChen 已提交
15
import reader
L
LielinJiang 已提交
16
from utility import add_arguments, print_arguments, check_cuda
17 18 19 20

parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
K
kbChen 已提交
21 22 23 24 25 26 27
add_arg('model', str, "ResNet50", "Set the network to use.")
add_arg('embedding_size', int, 0, "Embedding size.")
add_arg('batch_size', int, 1, "Minibatch size.")
add_arg('image_shape', str, "3,224,224", "Input image size.")
add_arg('use_gpu', bool, True, "Whether to use GPU or not.")
add_arg('with_mem_opt', bool, False, "Whether to use memory optimization or not.")
add_arg('pretrained_model', str, None, "Whether to use pretrained model.")
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
# yapf: enable

model_list = [m for m in dir(models) if "__" not in m]


def infer(args):
    # parameters from arguments
    model_name = args.model
    pretrained_model = args.pretrained_model
    with_memory_optimization = args.with_mem_opt
    image_shape = [int(m) for m in args.image_shape.split(",")]

    assert model_name in model_list, "{} is not in lists: {}".format(args.model,
                                                                     model_list)

    image = fluid.layers.data(name='image', shape=image_shape, dtype='float32')

    # model definition
    model = models.__dict__[model_name]()
K
kbChen 已提交
47 48
    out = model.net(input=image, embedding_size=args.embedding_size)

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
    test_program = fluid.default_main_program().clone(for_test=True)

    if with_memory_optimization:
        fluid.memory_optimize(fluid.default_main_program())

    place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    if pretrained_model:

        def if_exist(var):
            return os.path.exists(os.path.join(pretrained_model, var.name))

        fluid.io.load_vars(exe, pretrained_model, predicate=if_exist)

K
kbChen 已提交
65
    infer_reader = paddle.batch(reader.infer(args), batch_size=args.batch_size, drop_last=False)
66 67
    feeder = fluid.DataFeeder(place=place, feed_list=[image])

K
kbChen 已提交
68
    fetch_list = [out.name]
69 70

    for batch_id, data in enumerate(infer_reader()):
K
kbChen 已提交
71
        result = exe.run(test_program, fetch_list=fetch_list, feed=feeder.feed(data))
72
        result = result[0][0].reshape(-1)
K
kbChen 已提交
73
        print("Test-{0}-feature: {1}".format(batch_id, result[:5]))
74 75 76 77 78 79
        sys.stdout.flush()


def main():
    args = parser.parse_args()
    print_arguments(args)
L
LielinJiang 已提交
80
    check_cuda(args.use_gpu)
81 82 83 84 85
    infer(args)


if __name__ == '__main__':
    main()