infer.py 12.9 KB
Newer Older
L
lvmengsi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import functools
import os
from PIL import Image
import paddle.fluid as fluid
import paddle
import numpy as np
L
lvmengsi 已提交
26
import imageio
L
lvmengsi 已提交
27 28
import glob
from util.config import add_arguments, print_arguments
L
lvmengsi 已提交
29
from data_reader import celeba_reader_creator
L
lvmengsi 已提交
30
from util.utility import check_attribute_conflict, check_gpu, save_batch_image
L
lvmengsi 已提交
31
from util import utility
L
lvmengsi 已提交
32
import copy
L
lvmengsi 已提交
33

L
lvmengsi 已提交
34 35 36 37
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt

L
lvmengsi 已提交
38 39 40
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
L
lvmengsi 已提交
41
add_arg('model_net',         str,   'CGAN',            "The model used")
L
lvmengsi 已提交
42
add_arg('net_G',             str,   "resnet_9block",   "Choose the CycleGAN and Pix2pix generator's network, choose in [resnet_9block|resnet_6block|unet_128|unet_256]")
L
lvmengsi 已提交
43 44 45 46 47 48 49
add_arg('init_model',        str,   None,              "The init model file of directory.")
add_arg('output',            str,   "./infer_result",  "The directory the infer result to be saved to.")
add_arg('input_style',       str,   "A",               "The style of the input, A or B")
add_arg('norm_type',         str,   "batch_norm",      "Which normalization to used")
add_arg('use_gpu',           bool,  True,              "Whether to use GPU to train.")
add_arg('dropout',           bool,  False,             "Whether to use dropout")
add_arg('g_base_dims',       int,   64,                "Base channels in CycleGAN generator")
L
lvmengsi 已提交
50 51 52 53 54 55 56 57
add_arg('c_dim',             int,   13,                "the size of attrs")
add_arg('use_gru',           bool,  False,             "Whether to use GRU")
add_arg('crop_size',         int,   178,               "crop size")
add_arg('image_size',        int,   128,               "image size")
add_arg('selected_attrs',    str,
    "Bald,Bangs,Black_Hair,Blond_Hair,Brown_Hair,Bushy_Eyebrows,Eyeglasses,Male,Mouth_Slightly_Open,Mustache,No_Beard,Pale_Skin,Young",
"the attributes we selected to change")
add_arg('batch_size',        int,   16,                "batch size when test")
L
lvmengsi 已提交
58
add_arg('test_list',         str,   "./data/celeba/test_list_attr_celeba.txt",                "the test list file")
L
lvmengsi 已提交
59
add_arg('dataset_dir',       str,   "./data/celeba/",                "the dataset directory to be infered")
L
lvmengsi 已提交
60 61 62
add_arg('n_layers',          int,   5,                 "default layers in generotor")
add_arg('gru_n_layers',      int,   4,                 "default layers of GRU in generotor")
add_arg('noise_size',        int,   100,               "the noise dimension")
L
lvmengsi 已提交
63 64 65 66
# yapf: enable


def infer(args):
L
lvmengsi 已提交
67
    data_shape = [-1, 3, args.image_size, args.image_size]
L
lvmengsi 已提交
68
    input = fluid.layers.data(name='input', shape=data_shape, dtype='float32')
L
lvmengsi 已提交
69 70 71 72 73
    label_org_ = fluid.layers.data(
        name='label_org_', shape=[args.c_dim], dtype='float32')
    label_trg_ = fluid.layers.data(
        name='label_trg_', shape=[args.c_dim], dtype='float32')

L
lvmengsi 已提交
74
    model_name = 'net_G'
L
lvmengsi 已提交
75
    if args.model_net == 'CycleGAN':
L
lvmengsi 已提交
76 77
        from network.CycleGAN_network import CycleGAN_model
        model = CycleGAN_model()
L
lvmengsi 已提交
78
        if args.input_style == "A":
L
lvmengsi 已提交
79
            fake = model.network_G(input, name="GA", cfg=args)
L
lvmengsi 已提交
80
        elif args.input_style == "B":
L
lvmengsi 已提交
81
            fake = model.network_G(input, name="GB", cfg=args)
L
lvmengsi 已提交
82 83
        else:
            raise "Input with style [%s] is not supported." % args.input_style
Z
zhumanyu 已提交
84 85 86 87
    elif args.model_net == 'Pix2pix':
        from network.Pix2pix_network import Pix2pix_model
        model = Pix2pix_model()
        fake = model.network_G(input, "generator", cfg=args)
Z
zhumanyu 已提交
88 89 90 91
    elif args.model_net == 'StarGAN':
        from network.StarGAN_network import StarGAN_model
        model = StarGAN_model()
        fake = model.network_G(input, label_trg_, name="g_main", cfg=args)
L
lvmengsi 已提交
92 93 94 95
    elif args.model_net == 'STGAN':
        from network.STGAN_network import STGAN_model
        model = STGAN_model()
        fake, _ = model.network_G(
L
lvmengsi 已提交
96 97 98 99 100 101
            input,
            label_org_,
            label_trg_,
            cfg=args,
            name='generator',
            is_test=True)
L
lvmengsi 已提交
102 103 104 105
    elif args.model_net == 'AttGAN':
        from network.AttGAN_network import AttGAN_model
        model = AttGAN_model()
        fake, _ = model.network_G(
L
lvmengsi 已提交
106 107 108 109 110 111
            input,
            label_org_,
            label_trg_,
            cfg=args,
            name='generator',
            is_test=True)
L
lvmengsi 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    elif args.model_net == 'CGAN':
        noise = fluid.layers.data(
            name='noise', shape=[args.noise_size], dtype='float32')
        conditions = fluid.layers.data(
            name='conditions', shape=[1], dtype='float32')

        from network.CGAN_network import CGAN_model
        model = CGAN_model()
        fake = model.network_G(noise, conditions, name="G")
    elif args.model_net == 'DCGAN':
        noise = fluid.layers.data(
            name='noise', shape=[args.noise_size], dtype='float32')

        from network.DCGAN_network import DCGAN_model
        model = DCGAN_model()
        fake = model.network_G(noise, name="G")
L
lvmengsi 已提交
128
    else:
L
lvmengsi 已提交
129 130
        raise NotImplementedError("model_net {} is not support".format(
            args.model_net))
L
lvmengsi 已提交
131 132 133 134 135 136 137 138 139 140

    # prepare environment
    place = fluid.CPUPlace()
    if args.use_gpu:
        place = fluid.CUDAPlace(0)
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())
    for var in fluid.default_main_program().global_block().all_parameters():
        print(var.name)
    print(args.init_model + '/' + model_name)
L
lvmengsi 已提交
141
    fluid.io.load_persistables(exe, os.path.join(args.init_model, model_name))
L
lvmengsi 已提交
142 143 144 145
    print('load params done')
    if not os.path.exists(args.output):
        os.makedirs(args.output)

L
lvmengsi 已提交
146 147
    attr_names = args.selected_attrs.split(',')

L
lvmengsi 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
    if args.model_net == 'AttGAN' or args.model_net == 'STGAN':
        test_reader = celeba_reader_creator(
            image_dir=args.dataset_dir,
            list_filename=args.test_list,
            batch_size=args.batch_size,
            drop_last=False,
            args=args)
        reader_test = test_reader.get_test_reader(
            args, shuffle=False, return_name=True)
        for data in zip(reader_test()):
            real_img, label_org, name = data[0]
            print("read {}".format(name))
            label_trg = copy.deepcopy(label_org)
            tensor_img = fluid.LoDTensor()
            tensor_label_org = fluid.LoDTensor()
            tensor_label_trg = fluid.LoDTensor()
            tensor_label_org_ = fluid.LoDTensor()
            tensor_label_trg_ = fluid.LoDTensor()
            tensor_img.set(real_img, place)
            tensor_label_org.set(label_org, place)
L
lvmengsi 已提交
168
            real_img_temp = save_batch_image(real_img)
L
lvmengsi 已提交
169 170 171
            images = [real_img_temp]
            for i in range(args.c_dim):
                label_trg_tmp = copy.deepcopy(label_trg)
L
lvmengsi 已提交
172
                for j in range(len(label_org)):
L
lvmengsi 已提交
173
                    label_trg_tmp[j][i] = 1.0 - label_trg_tmp[j][i]
L
lvmengsi 已提交
174 175
                    label_trg_tmp = check_attribute_conflict(
                        label_trg_tmp, attr_names[i], attr_names)
L
lvmengsi 已提交
176
                label_org_ = list(map(lambda x: ((x * 2) - 1) * 0.5, label_org))
L
lvmengsi 已提交
177 178
                label_trg_ = list(
                    map(lambda x: ((x * 2) - 1) * 0.5, label_trg_tmp))
L
lvmengsi 已提交
179 180 181 182
                if args.model_net == 'AttGAN':
                    for k in range(len(label_org)):
                        label_trg_[k][i] = label_trg_[k][i] * 2.0
                tensor_label_org_.set(label_org_, place)
L
lvmengsi 已提交
183 184 185 186 187 188 189
                tensor_label_trg.set(label_trg, place)
                tensor_label_trg_.set(label_trg_, place)
                out = exe.run(feed={
                    "input": tensor_img,
                    "label_org_": tensor_label_org_,
                    "label_trg_": tensor_label_trg_
                },
L
lvmengsi 已提交
190
                              fetch_list=[fake.name])
L
lvmengsi 已提交
191
                fake_temp = save_batch_image(out[0])
L
lvmengsi 已提交
192 193
                images.append(fake_temp)
            images_concat = np.concatenate(images, 1)
L
lvmengsi 已提交
194 195
            if len(label_org) > 1:
                images_concat = np.concatenate(images_concat, 1)
L
lvmengsi 已提交
196
            imageio.imwrite(args.output + "/fake_img_" + name[0], (
L
lvmengsi 已提交
197
                (images_concat + 1) * 127.5).astype(np.uint8))
Z
zhumanyu 已提交
198 199 200 201 202 203 204 205 206 207 208
    elif args.model_net == 'StarGAN':
        test_reader = celeba_reader_creator(
            image_dir=args.dataset_dir,
            list_filename=args.test_list,
            batch_size=args.batch_size,
            drop_last=False,
            args=args)
        reader_test = test_reader.get_test_reader(
            args, shuffle=False, return_name=True)
        for data in zip(reader_test()):
            real_img, label_org, name = data[0]
L
lvmengsi 已提交
209
            print("read {}".format(name))
Z
zhumanyu 已提交
210 211 212 213
            tensor_img = fluid.LoDTensor()
            tensor_label_org = fluid.LoDTensor()
            tensor_img.set(real_img, place)
            tensor_label_org.set(label_org, place)
L
lvmengsi 已提交
214
            real_img_temp = save_batch_image(real_img)
Z
zhumanyu 已提交
215
            images = [real_img_temp]
L
lvmengsi 已提交
216
            for i in range(args.c_dim):
L
lvmengsi 已提交
217
                label_trg_tmp = copy.deepcopy(label_org)
L
lvmengsi 已提交
218
                for j in range(len(label_org)):
L
lvmengsi 已提交
219 220 221
                    label_trg_tmp[j][i] = 1.0 - label_trg_tmp[j][i]
                    label_trg = check_attribute_conflict(
                        label_trg_tmp, attr_names[i], attr_names)
Z
zhumanyu 已提交
222 223 224 225 226
                tensor_label_trg = fluid.LoDTensor()
                tensor_label_trg.set(label_trg, place)
                out = exe.run(
                    feed={"input": tensor_img,
                          "label_trg_": tensor_label_trg},
L
lvmengsi 已提交
227
                    fetch_list=[fake.name])
L
lvmengsi 已提交
228
                fake_temp = save_batch_image(out[0])
Z
zhumanyu 已提交
229 230
                images.append(fake_temp)
            images_concat = np.concatenate(images, 1)
L
lvmengsi 已提交
231 232
            if len(label_org) > 1:
                images_concat = np.concatenate(images_concat, 1)
L
lvmengsi 已提交
233 234
            imageio.imwrite(args.output + "/fake_img_" + name[0], (
                (images_concat + 1) * 127.5).astype(np.uint8))
L
lvmengsi 已提交
235

L
lvmengsi 已提交
236 237
    elif args.model_net == 'Pix2pix' or args.model_net == 'CycleGAN':
        for file in glob.glob(args.dataset_dir):
L
lvmengsi 已提交
238 239 240 241 242 243 244 245 246 247
            print("read {}".format(file))
            image_name = os.path.basename(file)
            image = Image.open(file).convert('RGB')
            image = image.resize((256, 256), Image.BICUBIC)
            image = np.array(image).transpose([2, 0, 1]).astype('float32')
            image = image / 255.0
            image = (image - 0.5) / 0.5
            data = image[np.newaxis, :]
            tensor = fluid.LoDTensor()
            tensor.set(data, place)
L
lvmengsi 已提交
248

L
lvmengsi 已提交
249 250 251
            fake_temp = exe.run(fetch_list=[fake.name], feed={"input": tensor})
            fake_temp = np.squeeze(fake_temp[0]).transpose([1, 2, 0])
            input_temp = np.squeeze(data).transpose([1, 2, 0])
L
lvmengsi 已提交
252

L
lvmengsi 已提交
253
            imageio.imwrite(args.output + "/fake_" + image_name, (
L
lvmengsi 已提交
254
                (fake_temp + 1) * 127.5).astype(np.uint8))
L
lvmengsi 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290

    elif args.model_net == 'CGAN':
        noise_data = np.random.uniform(
            low=-1.0, high=1.0,
            size=[args.batch_size, args.noise_size]).astype('float32')
        label = np.random.randint(
            0, 9, size=[args.batch_size, 1]).astype('float32')
        noise_tensor = fluid.LoDTensor()
        conditions_tensor = fluid.LoDTensor()
        noise_tensor.set(noise_data, place)
        conditions_tensor.set(label, place)
        fake_temp = exe.run(
            fetch_list=[fake.name],
            feed={"noise": noise_tensor,
                  "conditions": conditions_tensor})[0]
        fake_image = np.reshape(fake_temp, (args.batch_size, -1))

        fig = utility.plot(fake_image)
        plt.savefig(
            os.path.join(args.output, 'fake_cgan.png'), bbox_inches='tight')
        plt.close(fig)

    elif args.model_net == 'DCGAN':
        noise_data = np.random.uniform(
            low=-1.0, high=1.0,
            size=[args.batch_size, args.noise_size]).astype('float32')
        noise_tensor = fluid.LoDTensor()
        noise_tensor.set(noise_data, place)
        fake_temp = exe.run(fetch_list=[fake.name],
                            feed={"noise": noise_tensor})[0]
        fake_image = np.reshape(fake_temp, (args.batch_size, -1))

        fig = utility.plot(fake_image)
        plt.savefig(
            os.path.join(args.output, 'fake_dcgan.png'), bbox_inches='tight')
        plt.close(fig)
L
lvmengsi 已提交
291 292 293
    else:
        raise NotImplementedError("model_net {} is not support".format(
            args.model_net))
L
lvmengsi 已提交
294 295 296 297 298


if __name__ == "__main__":
    args = parser.parse_args()
    print_arguments(args)
L
lvmengsi 已提交
299
    check_gpu(args.use_gpu)
L
lvmengsi 已提交
300
    infer(args)