reader.py 10.2 KB
Newer Older
Z
Zeyu Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import os
import io
import itertools
from functools import partial

import numpy as np
from paddle.io import BatchSampler, DataLoader, Dataset
L
liu zhengxi 已提交
23
import paddle.distributed as dist
Z
Zeyu Chen 已提交
24
from paddlenlp.data import Pad
25 26 27 28 29 30 31 32 33 34 35 36 37 38
from paddlenlp.datasets import WMT14ende
from paddlenlp.data.sampler import SamplerHelper


def min_max_filer(data, max_len, min_len=0):
    # 1 for special tokens.
    data_min_len = min(len(data[0]), len(data[1])) + 1
    data_max_len = max(len(data[0]), len(data[1])) + 1
    return (data_min_len >= min_len) and (data_max_len <= max_len)


def create_data_loader(args):
    root = None if args.root == "None" else args.root
    (src_vocab, trg_vocab) = WMT14ende.get_vocab(root=root)
39 40 41 42 43
    padding_vocab = (
        lambda x: (x + args.pad_factor - 1) // args.pad_factor * args.pad_factor
    )
    args.src_vocab_size = padding_vocab(len(src_vocab))
    args.trg_vocab_size = padding_vocab(len(trg_vocab))
44 45 46
    transform_func = WMT14ende.get_default_transform_func(root=root)
    datasets = [
        WMT14ende.get_datasets(
47 48
            mode=m, root=root, transform_func=transform_func)
        for m in ["train", "dev"]
49 50 51 52 53 54 55
    ]

    data_loaders = [(None)] * 2
    for i, dataset in enumerate(datasets):
        dataset = dataset.filter(
            partial(
                min_max_filer, max_len=args.max_length))
L
liu zhengxi 已提交
56 57
        batch_sampler = TransformerBatchSampler(
            dataset=dataset,
58
            batch_size=args.batch_size,
L
liu zhengxi 已提交
59 60 61 62 63 64 65 66 67
            pool_size=args.pool_size,
            sort_type=args.sort_type,
            shuffle=args.shuffle,
            shuffle_batch=args.shuffle_batch,
            use_token_batch=True,
            max_length=args.max_length,
            distribute_mode=True if i == 0 else False,
            world_size=dist.get_world_size(),
            rank=dist.get_rank())
L
liu zhengxi 已提交
68

Z
Zeyu Chen 已提交
69 70 71 72 73 74 75 76 77 78
        data_loader = DataLoader(
            dataset=dataset,
            batch_sampler=batch_sampler,
            collate_fn=partial(
                prepare_train_input,
                bos_idx=args.bos_idx,
                eos_idx=args.eos_idx,
                pad_idx=args.bos_idx),
            num_workers=0,
            return_list=True)
79
        data_loaders[i] = (data_loader)
Z
Zeyu Chen 已提交
80 81 82
    return data_loaders


83 84 85
def create_infer_loader(args):
    root = None if args.root == "None" else args.root
    (src_vocab, trg_vocab) = WMT14ende.get_vocab(root=root)
86 87 88 89 90
    padding_vocab = (
        lambda x: (x + args.pad_factor - 1) // args.pad_factor * args.pad_factor
    )
    args.src_vocab_size = padding_vocab(len(src_vocab))
    args.trg_vocab_size = padding_vocab(len(trg_vocab))
91 92
    transform_func = WMT14ende.get_default_transform_func(root=root)
    dataset = WMT14ende.get_datasets(
93
        mode="test", root=root, transform_func=transform_func).filter(
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
            partial(
                min_max_filer, max_len=args.max_length))

    batch_sampler = SamplerHelper(dataset).batch(
        batch_size=args.infer_batch_size, drop_last=False)

    data_loader = DataLoader(
        dataset=dataset,
        batch_sampler=batch_sampler,
        collate_fn=partial(
            prepare_infer_input,
            bos_idx=args.bos_idx,
            eos_idx=args.eos_idx,
            pad_idx=args.bos_idx),
        num_workers=0,
        return_list=True)
    return data_loader, trg_vocab.to_tokens


113 114 115 116 117 118 119 120 121 122 123
def adapt_vocab_size(args):
    root = None if args.root == "None" else args.root
    (src_vocab, trg_vocab) = WMT14ende.get_vocab(root=root)
    padding_vocab = (
        lambda x: (x + args.pad_factor - 1) // args.pad_factor * args.pad_factor
    )

    args.src_vocab_size = padding_vocab(len(src_vocab))
    args.trg_vocab_size = padding_vocab(len(trg_vocab))


Z
Zeyu Chen 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
def prepare_train_input(insts, bos_idx, eos_idx, pad_idx):
    """
    Put all padded data needed by training into a list.
    """
    word_pad = Pad(pad_idx)
    src_word = word_pad([inst[0] + [eos_idx] for inst in insts])
    trg_word = word_pad([[bos_idx] + inst[1] for inst in insts])
    lbl_word = np.expand_dims(
        word_pad([inst[1] + [eos_idx] for inst in insts]), axis=2)

    data_inputs = [src_word, trg_word, lbl_word]

    return data_inputs


def prepare_infer_input(insts, bos_idx, eos_idx, pad_idx):
    """
    Put all padded data needed by beam search decoder into a list.
    """
    word_pad = Pad(pad_idx)
    src_word = word_pad([inst[0] + [eos_idx] for inst in insts])

    return [src_word, ]


class SortType(object):
    GLOBAL = 'global'
    POOL = 'pool'
    NONE = "none"
L
liu zhengxi 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303


class SentenceBatchCreator(object):
    def __init__(self, batch_size):
        self.batch = []
        self._batch_size = batch_size

    def append(self, info):
        self.batch.append(info)
        if len(self.batch) == self._batch_size:
            tmp = self.batch
            self.batch = []
            return tmp


class TokenBatchCreator(object):
    def __init__(self, batch_size):
        self._batch = []
        self.max_len = -1
        self._batch_size = batch_size

    def append(self, info):
        cur_len = info.max_len
        max_len = max(self.max_len, cur_len)
        if max_len * (len(self._batch) + 1) > self._batch_size:
            result = self._batch
            self._batch = [info]
            self.max_len = cur_len
            return result
        else:
            self.max_len = max_len
            self._batch.append(info)

    @property
    def batch(self):
        return self._batch


class SampleInfo(object):
    def __init__(self, i, lens):
        self.i = i
        # Take bos and eos into account
        self.min_len = min(lens[0] + 1, lens[1] + 1)
        self.max_len = max(lens[0] + 1, lens[1] + 1)
        self.src_len = lens[0] + 1
        self.trg_len = lens[1] + 1


class TransformerBatchSampler(BatchSampler):
    def __init__(self,
                 dataset,
                 batch_size,
                 pool_size=10000,
                 sort_type=SortType.NONE,
                 min_length=0,
                 max_length=100,
                 shuffle=False,
                 shuffle_batch=False,
                 use_token_batch=False,
                 clip_last_batch=False,
                 distribute_mode=True,
                 seed=0,
                 world_size=1,
                 rank=0):
        for arg, value in locals().items():
            if arg != "self":
                setattr(self, "_" + arg, value)
        self._random = np.random
        self._random.seed(seed)
        # for multi-devices
        self._distribute_mode = distribute_mode
        self._nranks = world_size
        self._local_rank = rank
        self._sample_infos = []
        for i, data in enumerate(self._dataset):
            lens = [len(data[0]), len(data[1])]
            self._sample_infos.append(SampleInfo(i, lens))

    def __iter__(self):
        # global sort or global shuffle
        if self._sort_type == SortType.GLOBAL:
            infos = sorted(self._sample_infos, key=lambda x: x.trg_len)
            infos = sorted(infos, key=lambda x: x.src_len)
        else:
            if self._shuffle:
                infos = self._sample_infos
                self._random.shuffle(infos)
            else:
                infos = self._sample_infos

            if self._sort_type == SortType.POOL:
                reverse = True
                for i in range(0, len(infos), self._pool_size):
                    # To avoid placing short next to long sentences
                    reverse = not reverse
                    infos[i:i + self._pool_size] = sorted(
                        infos[i:i + self._pool_size],
                        key=lambda x: x.max_len,
                        reverse=reverse)

        batches = []
        batch_creator = TokenBatchCreator(
            self.
            _batch_size) if self._use_token_batch else SentenceBatchCreator(
                self._batch_size * self._nranks)

        for info in infos:
            batch = batch_creator.append(info)
            if batch is not None:
                batches.append(batch)

        if not self._clip_last_batch and len(batch_creator.batch) != 0:
            batches.append(batch_creator.batch)

        if self._shuffle_batch:
            self._random.shuffle(batches)

        if not self._use_token_batch:
            # When producing batches according to sequence number, to confirm
            # neighbor batches which would be feed and run parallel have similar
            # length (thus similar computational cost) after shuffle, we as take
            # them as a whole when shuffling and split here
            batches = [[
                batch[self._batch_size * i:self._batch_size * (i + 1)]
                for i in range(self._nranks)
            ] for batch in batches]
            batches = list(itertools.chain.from_iterable(batches))
        self.batch_number = (len(batches) + self._nranks - 1) // self._nranks

        # for multi-device
        for batch_id, batch in enumerate(batches):
            if not self._distribute_mode or (
                    batch_id % self._nranks == self._local_rank):
                batch_indices = [info.i for info in batch]
                yield batch_indices
        if self._distribute_mode and len(batches) % self._nranks != 0:
            if self._local_rank >= len(batches) % self._nranks:
                # use previous data to pad
                yield batch_indices

    def __len__(self):
        if hasattr(self, "batch_number"):  #
            return self.batch_number
        if not self._use_token_batch:
            batch_number = (
                len(self._dataset) + self._batch_size * self._nranks - 1) // (
                    self._batch_size * self._nranks)
        else:
            # For uncertain batch number, the actual value is self.batch_number
            batch_number = sys.maxsize
        return batch_number