train.py 14.9 KB
Newer Older
R
root 已提交
1 2 3
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
4 5 6 7
import os
import numpy as np
import time
import sys
R
root 已提交
8 9
import functools
import math
10
import paddle
11
import paddle.fluid as fluid
12
import paddle.dataset.flowers as flowers
13
import models
14 15
import reader
import argparse
R
ruri 已提交
16 17 18 19
import functools
import subprocess
import utils
from utils.learning_rate import cosine_decay
20
from utility import add_arguments, print_arguments
R
ruri 已提交
21 22
import models
import models_name
23 24 25

parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
26 27 28 29 30 31 32 33 34 35 36 37 38 39
# yapf: disable
add_arg('batch_size',       int,   256,                  "Minibatch size.")
add_arg('use_gpu',          bool,  True,                 "Whether to use GPU or not.")
add_arg('total_images',     int,   1281167,              "Training image number.")
add_arg('num_epochs',       int,   120,                  "number of epochs.")
add_arg('class_dim',        int,   1000,                 "Class number.")
add_arg('image_shape',      str,   "3,224,224",          "input image size")
add_arg('model_save_dir',   str,   "output",             "model save directory")
add_arg('with_mem_opt',     bool,  True,                 "Whether to use memory optimization or not.")
add_arg('pretrained_model', str,   None,                 "Whether to use pretrained model.")
add_arg('checkpoint',       str,   None,                 "Whether to resume checkpoint.")
add_arg('lr',               float, 0.1,                  "set learning rate.")
add_arg('lr_strategy',      str,   "piecewise_decay",    "Set the learning rate decay strategy.")
add_arg('model',            str,   "SE_ResNeXt50_32x4d", "Set the network to use.")
40
add_arg('enable_ce',        bool,  False,                "If set True, enable continuous evaluation job.")
M
minqiyang 已提交
41
add_arg('data_dir',         str,   "./data/ILSVRC2012",  "The ImageNet dataset root dir.")
R
ruri 已提交
42 43
add_arg('model_category',   str,   "models",             "Whether to use models_name or not, valid value:'models','models_name'" )
# yapf: enabl
44

R
ruri 已提交
45 46 47 48 49 50 51

def set_models(model):
    global models
    if model == "models":
        models = models
    else:
        models = models_name
52 53 54 55 56 57 58


def optimizer_setting(params):
    ls = params["learning_strategy"]
    if ls["name"] == "piecewise_decay":
        if "total_images" not in params:
            total_images = 1281167
Y
Yibing Liu 已提交
59
        else:
60 61 62
            total_images = params["total_images"]
        batch_size = ls["batch_size"]
        step = int(total_images / batch_size + 1)
D
Dang Qingqing 已提交
63

64 65 66 67
        bd = [step * e for e in ls["epochs"]]
        base_lr = params["lr"]
        lr = []
        lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
68
        optimizer = fluid.optimizer.Momentum(
69 70 71 72
            learning_rate=fluid.layers.piecewise_decay(
                boundaries=bd, values=lr),
            momentum=0.9,
            regularization=fluid.regularizer.L2Decay(1e-4))
R
ruri 已提交
73

74 75 76 77 78 79 80 81 82 83 84 85
    elif ls["name"] == "cosine_decay":
        if "total_images" not in params:
            total_images = 1281167
        else:
            total_images = params["total_images"]

        batch_size = ls["batch_size"]
        step = int(total_images / batch_size + 1)

        lr = params["lr"]
        num_epochs = params["num_epochs"]

86 87
        optimizer = fluid.optimizer.Momentum(
            learning_rate=cosine_decay(
88
                learning_rate=lr, step_each_epoch=step, epochs=num_epochs),
89
            momentum=0.9,
R
ruri 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
            regularization=fluid.regularizer.L2Decay(4e-5))
    elif ls["name"] == "exponential_decay":
        if "total_images" not in params:
            total_images = 1281167
        else:
            total_images = params["total_images"]
        batch_size = ls["batch_size"]
        step = int(total_images / batch_size +1)
        lr = params["lr"]
        num_epochs = params["num_epochs"]
        learning_decay_rate_factor=ls["learning_decay_rate_factor"]
        num_epochs_per_decay = ls["num_epochs_per_decay"]
        NUM_GPUS = 1

        optimizer = fluid.optimizer.Momentum(
            learning_rate=fluid.layers.exponential_decay(
                learning_rate = lr * NUM_GPUS,
                decay_steps = step * num_epochs_per_decay / NUM_GPUS,
                decay_rate = learning_decay_rate_factor),
            momentum=0.9,

            regularization = fluid.regularizer.L2Decay(4e-5))

113
    else:
114
        lr = params["lr"]
115
        optimizer = fluid.optimizer.Momentum(
116
            learning_rate=lr,
117 118 119
            momentum=0.9,
            regularization=fluid.regularizer.L2Decay(1e-4))

120
    return optimizer
121

R
ruri 已提交
122 123 124 125
def net_config(image, label, model, args):
    model_list = [m for m in dir(models) if "__" not in m]
    assert args.model in model_list,"{} is not lists: {}".format(
        args.model, model_list)
126

127 128 129
    class_dim = args.class_dim
    model_name = args.model

130 131
    if args.enable_ce:
        assert model_name == "SE_ResNeXt50_32x4d"
D
Dang Qingqing 已提交
132
        model.params["dropout_seed"] = 100
R
root 已提交
133
        class_dim = 102
134

R
root 已提交
135
    if model_name == "GoogleNet":
136 137 138 139 140 141 142 143 144 145 146
        out0, out1, out2 = model.net(input=image, class_dim=class_dim)
        cost0 = fluid.layers.cross_entropy(input=out0, label=label)
        cost1 = fluid.layers.cross_entropy(input=out1, label=label)
        cost2 = fluid.layers.cross_entropy(input=out2, label=label)
        avg_cost0 = fluid.layers.mean(x=cost0)
        avg_cost1 = fluid.layers.mean(x=cost1)
        avg_cost2 = fluid.layers.mean(x=cost2)

        avg_cost = avg_cost0 + 0.3 * avg_cost1 + 0.3 * avg_cost2
        acc_top1 = fluid.layers.accuracy(input=out0, label=label, k=1)
        acc_top5 = fluid.layers.accuracy(input=out0, label=label, k=5)
Y
Yibing Liu 已提交
147
    else:
148 149
        out = model.net(input=image, class_dim=class_dim)
        cost = fluid.layers.cross_entropy(input=out, label=label)
150

151 152 153
        avg_cost = fluid.layers.mean(x=cost)
        acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
        acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)
154

R
ruri 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
    return avg_cost, acc_top1, acc_top5


def build_program(is_train, main_prog, startup_prog, args):
    image_shape = [int(m) for m in args.image_shape.split(",")]
    model_name = args.model
    model_list = [m for m in dir(models) if "__" not in m]
    assert model_name in model_list, "{} is not in lists: {}".format(args.model,
                                                                     model_list)
    model = models.__dict__[model_name]()
    with fluid.program_guard(main_prog, startup_prog):
        py_reader = fluid.layers.py_reader(
            capacity=16,
            shapes=[[-1] + image_shape, [-1, 1]],
            lod_levels=[0, 0],
            dtypes=["float32", "int64"],
            use_double_buffer=True)
        with fluid.unique_name.guard():
            image, label = fluid.layers.read_file(py_reader)
            avg_cost, acc_top1, acc_top5 = net_config(image, label, model, args)
            avg_cost.persistable = True
            acc_top1.persistable = True
            acc_top5.persistable = True
            if is_train:
                params = model.params
                params["total_images"] = args.total_images
                params["lr"] = args.lr
                params["num_epochs"] = args.num_epochs
                params["learning_strategy"]["batch_size"] = args.batch_size
                params["learning_strategy"]["name"] = args.lr_strategy

                optimizer = optimizer_setting(params)
                optimizer.minimize(avg_cost)

    return py_reader, avg_cost, acc_top1, acc_top5


def train(args):
    # parameters from arguments
    model_name = args.model
    checkpoint = args.checkpoint
    pretrained_model = args.pretrained_model
    with_memory_optimization = args.with_mem_opt
    model_save_dir = args.model_save_dir
199

R
ruri 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
    startup_prog = fluid.Program()
    train_prog = fluid.Program()
    test_prog = fluid.Program()
    if args.enable_ce:
        startup_prog.random_seed = 1000
        train_prog.random_seed = 1000

    train_py_reader, train_cost, train_acc1, train_acc5 = build_program(
        is_train=True,
        main_prog=train_prog,
        startup_prog=startup_prog,
        args=args)
    test_py_reader, test_cost, test_acc1, test_acc5 = build_program(
        is_train=False,
        main_prog=test_prog,
        startup_prog=startup_prog,
        args=args)
    test_prog = test_prog.clone(for_test=True)
218

219
    if with_memory_optimization:
R
ruri 已提交
220 221
        fluid.memory_optimize(train_prog)
        fluid.memory_optimize(test_prog)
222

223
    place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
224
    exe = fluid.Executor(place)
R
ruri 已提交
225
    exe.run(startup_prog)
226

227
    if checkpoint is not None:
R
ruri 已提交
228
        fluid.io.load_persistables(exe, checkpoint, main_program=train_prog)
229

230 231 232 233 234
    if pretrained_model:

        def if_exist(var):
            return os.path.exists(os.path.join(pretrained_model, var.name))

R
ruri 已提交
235 236
        fluid.io.load_vars(
            exe, pretrained_model, main_program=train_prog, predicate=if_exist)
237

R
ruri 已提交
238 239 240 241
    visible_device = os.getenv('CUDA_VISIBLE_DEVICES')
    if visible_device:
        device_num = len(visible_device.split(','))
    else:
R
ruri 已提交
242
        device_num = subprocess.check_output(['nvidia-smi', '-L']).decode().count('\n')
243

R
ruri 已提交
244
    train_batch_size = args.batch_size / device_num
K
kolinwei 已提交
245
    test_batch_size = 16
246
    if not args.enable_ce:
R
ruri 已提交
247 248
        train_reader = paddle.batch(
            reader.train(), batch_size=train_batch_size, drop_last=True)
249 250 251 252 253 254
        test_reader = paddle.batch(reader.val(), batch_size=test_batch_size)
    else:
        # use flowers dataset for CE and set use_xmap False to avoid disorder data
        # but it is time consuming. For faster speed, need another dataset.
        import random
        random.seed(0)
D
Dang Qingqing 已提交
255
        np.random.seed(0)
256
        train_reader = paddle.batch(
R
ruri 已提交
257 258 259
            flowers.train(use_xmap=False),
            batch_size=train_batch_size,
            drop_last=True)
260 261 262
        test_reader = paddle.batch(
            flowers.test(use_xmap=False), batch_size=test_batch_size)

R
ruri 已提交
263 264
    train_py_reader.decorate_paddle_reader(train_reader)
    test_py_reader.decorate_paddle_reader(test_reader)
L
Luo Tao 已提交
265
    train_exe = fluid.ParallelExecutor(
R
ruri 已提交
266 267 268 269 270 271
        main_program=train_prog,
        use_cuda=bool(args.use_gpu),
        loss_name=train_cost.name)

    train_fetch_list = [train_cost.name, train_acc1.name, train_acc5.name]
    test_fetch_list = [test_cost.name, test_acc1.name, test_acc5.name]
272

R
ruri 已提交
273
    params = models.__dict__[args.model]().params
274

275
    for pass_id in range(params["num_epochs"]):
R
ruri 已提交
276 277 278

        train_py_reader.start()

279 280
        train_info = [[], [], []]
        test_info = [[], [], []]
281
        train_time = []
R
ruri 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
        batch_id = 0
        try:
            while True:
                t1 = time.time()
                loss, acc1, acc5 = train_exe.run(fetch_list=train_fetch_list)
                t2 = time.time()
                period = t2 - t1
                loss = np.mean(np.array(loss))
                acc1 = np.mean(np.array(acc1))
                acc5 = np.mean(np.array(acc5))
                train_info[0].append(loss)
                train_info[1].append(acc1)
                train_info[2].append(acc5)
                train_time.append(period)
                if batch_id % 10 == 0:
                    print("Pass {0}, trainbatch {1}, loss {2}, \
                        acc1 {3}, acc5 {4} time {5}"
                          .format(pass_id, batch_id, loss, acc1, acc5,
                                  "%2.2f sec" % period))
                    sys.stdout.flush()
                batch_id += 1
        except fluid.core.EOFException:
            train_py_reader.reset()
305 306 307 308

        train_loss = np.array(train_info[0]).mean()
        train_acc1 = np.array(train_info[1]).mean()
        train_acc5 = np.array(train_info[2]).mean()
309
        train_speed = np.array(train_time).mean() / (train_batch_size * device_num)
R
ruri 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339

        test_py_reader.start()

        test_batch_id = 0
        try:
            while True:
                t1 = time.time()
                loss, acc1, acc5 = exe.run(program=test_prog,
                                           fetch_list=test_fetch_list)
                t2 = time.time()
                period = t2 - t1
                loss = np.mean(loss)
                acc1 = np.mean(acc1)
                acc5 = np.mean(acc5)
                test_info[0].append(loss)
                test_info[1].append(acc1)
                test_info[2].append(acc5)
                if test_batch_id % 10 == 0:
                    print("Pass {0},testbatch {1},loss {2}, \
                        acc1 {3},acc5 {4},time {5}"
                          .format(pass_id, test_batch_id, loss, acc1, acc5,
                                  "%2.2f sec" % period))
                    sys.stdout.flush()
                test_batch_id += 1
        except fluid.core.EOFException:
            test_py_reader.reset()

        test_loss = np.array(test_info[0]).mean()
        test_acc1 = np.array(test_info[1]).mean()
        test_acc5 = np.array(test_info[2]).mean()
340

341
        print("End pass {0}, train_loss {1}, train_acc1 {2}, train_acc5 {3}, "
R
ruri 已提交
342 343 344
              "test_loss {4}, test_acc1 {5}, test_acc5 {6}".format(
                  pass_id, train_loss, train_acc1, train_acc5, test_loss,
                  test_acc1, test_acc5))
345 346
        sys.stdout.flush()

347
        model_path = os.path.join(model_save_dir + '/' + model_name,
348
                                  str(pass_id))
349 350
        if not os.path.isdir(model_path):
            os.makedirs(model_path)
R
ruri 已提交
351
        fluid.io.save_persistables(exe, model_path, main_program=train_prog)
352

353 354
        # This is for continuous evaluation only
        if args.enable_ce and pass_id == args.num_epochs - 1:
R
ruri 已提交
355
            if device_num == 1:
D
Dang Qingqing 已提交
356
                # Use the mean cost/acc for training
357 358 359 360 361 362 363 364 365
                print("kpis	train_cost	%s" % train_loss)
                print("kpis	train_acc_top1	%s" % train_acc1)
                print("kpis	train_acc_top5	%s" % train_acc5)
                # Use the mean cost/acc for testing
                print("kpis	test_cost	%s" % test_loss)
                print("kpis	test_acc_top1	%s" % test_acc1)
                print("kpis	test_acc_top5	%s" % test_acc5)
                print("kpis	train_speed	%s" % train_speed)
            else:
D
Dang Qingqing 已提交
366
                # Use the mean cost/acc for training
R
ruri 已提交
367 368 369 370 371
                print("kpis	train_cost_card%s	%s" % (device_num, train_loss))
                print("kpis	train_acc_top1_card%s	%s" %
                      (device_num, train_acc1))
                print("kpis	train_acc_top5_card%s	%s" %
                      (device_num, train_acc5))
372
                # Use the mean cost/acc for testing
R
ruri 已提交
373 374 375 376
                print("kpis	test_cost_card%s	%s" % (device_num, test_loss))
                print("kpis	test_acc_top1_card%s	%s" % (device_num, test_acc1))
                print("kpis	test_acc_top5_card%s	%s" % (device_num, test_acc5))
                print("kpis	train_speed_card%s	%s" % (device_num, train_speed))
377

378

379
def main():
380
    args = parser.parse_args()
R
ruri 已提交
381 382 383 384
    models_now = args.model_category
    assert models_now in ["models", "models_name"], "{} is not in lists: {}".format(
            models_now, ["models", "models_name"])
    set_models(models_now)
385
    print_arguments(args)
386
    train(args)
387

388 389 390

if __name__ == '__main__':
    main()