run_ernie_classifier.py 16.2 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
"""
Sentiment Classification Task
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time
import argparse
import numpy as np
import multiprocessing
import sys

import paddle
import paddle.fluid as fluid

sys.path.append("../models/classification/")
sys.path.append("..")
print(sys.path)

from nets import bow_net
from nets import lstm_net
from nets import cnn_net
from nets import bilstm_net
from nets import gru_net
from nets import ernie_base_net
from nets import ernie_bilstm_net
from preprocess.ernie import task_reader
from models.representation.ernie import ErnieConfig
32
from models.representation.ernie import ernie_encoder, ernie_encoder_with_paddle_hub
Y
Yibing Liu 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45
from models.representation.ernie import ernie_pyreader
from utils import ArgumentGroup
from utils import print_arguments
from utils import init_checkpoint

# yapf: disable
parser = argparse.ArgumentParser(__doc__)
model_g = ArgumentGroup(parser, "model", "model configuration and paths.")
model_g.add_arg("ernie_config_path",         str,  None,           "Path to the json file for ernie model config.")
model_g.add_arg("senta_config_path", str, None, "Path to the json file for senta model config.")
model_g.add_arg("init_checkpoint", str, None, "Init checkpoint to resume training from.")
model_g.add_arg("checkpoints", str, "checkpoints", "Path to save checkpoints")
model_g.add_arg("model_type", str, "ernie_base", "Type of current ernie model")
46
model_g.add_arg("use_paddle_hub", bool, False, "Whether to load ERNIE using PaddleHub")
Y
Yibing Liu 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

train_g = ArgumentGroup(parser, "training", "training options.")
train_g.add_arg("epoch", int, 10, "Number of epoches for training.")
train_g.add_arg("save_steps", int, 10000, "The steps interval to save checkpoints.")
train_g.add_arg("validation_steps", int, 1000, "The steps interval to evaluate model performance.")
train_g.add_arg("lr", float, 0.002, "The Learning rate value for training.")

log_g = ArgumentGroup(parser, "logging", "logging related")
log_g.add_arg("skip_steps", int, 10, "The steps interval to print loss.")
log_g.add_arg("verbose", bool, False, "Whether to output verbose log")

data_g = ArgumentGroup(parser, "data", "Data paths, vocab paths and data processing options")
data_g.add_arg("data_dir", str, None, "Path to training data.")
data_g.add_arg("vocab_path", str, None, "Vocabulary path.")
data_g.add_arg("batch_size", int, 256, "Total examples' number in batch for training.")
data_g.add_arg("random_seed", int, 0, "Random seed.")
data_g.add_arg("num_labels",  int,  2,     "label number")
data_g.add_arg("max_seq_len", int,  512,   "Number of words of the longest seqence.")
data_g.add_arg("train_set",           str,  None,  "Path to training data.")
data_g.add_arg("test_set",            str,  None,  "Path to test data.")
data_g.add_arg("dev_set",             str,  None,  "Path to validation data.")
data_g.add_arg("label_map_config",    str,  None,  "label_map_path.")
data_g.add_arg("do_lower_case",       bool, True,
               "Whether to lower case the input text. Should be True for uncased models and False for cased models.")

run_type_g = ArgumentGroup(parser, "run_type", "running type options.")
run_type_g.add_arg("use_cuda", bool, True, "If set, use GPU for training.")
run_type_g.add_arg("do_train", bool, True, "Whether to perform training.")
run_type_g.add_arg("do_val", bool, True, "Whether to perform evaluation.")
run_type_g.add_arg("do_infer", bool, True, "Whether to perform inference.")

args = parser.parse_args()
# yapf: enable.

def create_model(args,
                 embeddings,
                 labels,
                 is_prediction=False):

    """
    Create Model for sentiment classification based on ERNIE encoder
    """
    sentence_embeddings = embeddings["sentence_embeddings"]
    token_embeddings = embeddings["token_embeddings"]

    if args.model_type == "ernie_base":
        ce_loss, probs = ernie_base_net(sentence_embeddings, labels,
            args.num_labels)

    elif args.model_type == "ernie_bilstm":
        ce_loss, probs = ernie_bilstm_net(token_embeddings, labels,
            args.num_labels)

    else:
        raise ValueError("Unknown network type!")

    if is_prediction:
        return probs
    loss = fluid.layers.mean(x=ce_loss)

    num_seqs = fluid.layers.create_tensor(dtype='int64')
    accuracy = fluid.layers.accuracy(input=probs, label=labels, total=num_seqs)

    return loss, accuracy, num_seqs


def evaluate(exe, test_program, test_pyreader, fetch_list, eval_phase):
    """
    Evaluation Function
    """
    test_pyreader.start()
    total_cost, total_acc, total_num_seqs = [], [], []
    time_begin = time.time()
    while True:
        try:
            np_loss, np_acc, np_num_seqs = exe.run(program=test_program,
                                                   fetch_list=fetch_list,
                                                   return_numpy=False)
            np_loss = np.array(np_loss)
            np_acc = np.array(np_acc)
            np_num_seqs = np.array(np_num_seqs)
            total_cost.extend(np_loss * np_num_seqs)
            total_acc.extend(np_acc * np_num_seqs)
            total_num_seqs.extend(np_num_seqs)
        except fluid.core.EOFException:
            test_pyreader.reset()
            break
    time_end = time.time()
    print("[%s evaluation] ave loss: %f, ave acc: %f, elapsed time: %f s" %
        (eval_phase, np.sum(total_cost) / np.sum(total_num_seqs),
        np.sum(total_acc) / np.sum(total_num_seqs), time_end - time_begin))


def infer(exe, infer_program, infer_pyreader, fetch_list, infer_phase):
    """
    Inference Function
    """
    infer_pyreader.start()
    time_begin = time.time()
    while True:
        try:
            batch_probs = exe.run(program=infer_program, fetch_list=fetch_list,
                                return_numpy=True)
            for probs in batch_probs[0]:
                print("%d\t%f\t%f" % (np.argmax(probs), probs[0], probs[1]))
        except fluid.core.EOFException:
            infer_pyreader.reset()
            break
    time_end = time.time()
    print("[%s] elapsed time: %f s" % (infer_phase, time_end - time_begin))


def main(args):
    """
    Main Function
    """
    args = parser.parse_args()
    ernie_config = ErnieConfig(args.ernie_config_path)
    ernie_config.print_config()

    if args.use_cuda:
        place = fluid.CUDAPlace(int(os.getenv('FLAGS_selected_gpus', '0')))
        dev_count = fluid.core.get_cuda_device_count()
    else:
        place = fluid.CPUPlace()
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
    exe = fluid.Executor(place)

    reader = task_reader.ClassifyReader(
        vocab_path=args.vocab_path,
        label_map_config=args.label_map_config,
        max_seq_len=args.max_seq_len,
        do_lower_case=args.do_lower_case,
        random_seed=args.random_seed)

    if not (args.do_train or args.do_val or args.do_infer):
        raise ValueError("For args `do_train`, `do_val` and `do_infer`, at "
                         "least one of them must be True.")

    startup_prog = fluid.Program()
    if args.random_seed is not None:
        startup_prog.random_seed = args.random_seed

    if args.do_train:
        train_data_generator = reader.data_generator(
            input_file=args.train_set,
            batch_size=args.batch_size,
            epoch=args.epoch,
            shuffle=True,
            phase="train")

        num_train_examples = reader.get_num_examples(args.train_set)

        max_train_steps = args.epoch * num_train_examples // args.batch_size // dev_count

        print("Device count: %d" % dev_count)
        print("Num train examples: %d" % num_train_examples)
        print("Max train steps: %d" % max_train_steps)

        train_program = fluid.Program()

        with fluid.program_guard(train_program, startup_prog):
            with fluid.unique_name.guard():
                # create ernie_pyreader
                train_pyreader, ernie_inputs, labels = ernie_pyreader(
                    args,
                    pyreader_name='train_reader')

                # get ernie_embeddings
216 217 218 219
                if args.use_paddle_hub:
                    embeddings = ernie_encoder_with_paddle_hub(ernie_inputs, args.max_seq_len)
                else:
                    embeddings = ernie_encoder(ernie_inputs, ernie_config=ernie_config)
Y
Yibing Liu 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250

                # user defined model based on ernie embeddings
                loss, accuracy, num_seqs = create_model(
                args,
                embeddings,
                labels=labels,
                is_prediction=False)

                """
                sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=args.lr)
                sgd_optimizer.minimize(loss)
                """
                optimizer = fluid.optimizer.Adam(learning_rate=args.lr)
                optimizer.minimize(loss)

        if args.verbose:
            lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
                program=train_program, batch_size=args.batch_size)
            print("Theoretical memory usage in training: %.3f - %.3f %s" %
                (lower_mem, upper_mem, unit))

    if args.do_val:
        test_prog = fluid.Program()
        with fluid.program_guard(test_prog, startup_prog):
            with fluid.unique_name.guard():
                # create ernie_pyreader
                test_pyreader, ernie_inputs, labels = ernie_pyreader(
                    args,
                    pyreader_name='eval_reader')

                # get ernie_embeddings
251 252 253 254
                if args.use_paddle_hub:
                    embeddings = ernie_encoder_with_paddle_hub(ernie_inputs, args.max_seq_len)
                else:
                    embeddings = ernie_encoder(ernie_inputs, ernie_config=ernie_config)
Y
Yibing Liu 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273

                # user defined model based on ernie embeddings
                loss, accuracy, num_seqs = create_model(
                args,
                embeddings,
                labels=labels,
                is_prediction=False)

        test_prog = test_prog.clone(for_test=True)

    if args.do_infer:
        infer_prog = fluid.Program()
        with fluid.program_guard(infer_prog, startup_prog):
            with fluid.unique_name.guard():
                infer_pyreader, ernie_inputs, labels = ernie_pyreader(
                    args,
                    pyreader_name="infer_reader")

                # get ernie_embeddings
274 275 276 277
                if args.use_paddle_hub:
                    embeddings = ernie_encoder_with_paddle_hub(ernie_inputs, args.max_seq_len)
                else:
                    embeddings = ernie_encoder(ernie_inputs, ernie_config=ernie_config)
Y
Yibing Liu 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292

                probs = create_model(args,
                                    embeddings,
                                    labels=labels,
                                    is_prediction=True)

        infer_prog = infer_prog.clone(for_test=True)

    exe.run(startup_prog)

    if args.do_train:
        if args.init_checkpoint:
            init_checkpoint(
                exe,
                args.init_checkpoint,
293 294
                main_program=train_program)
    elif args.do_val:
Y
Yibing Liu 已提交
295 296 297 298 299 300
        if not args.init_checkpoint:
            raise ValueError("args 'init_checkpoint' should be set if"
                             "only doing validation or testing!")
        init_checkpoint(
            exe,
            args.init_checkpoint,
301 302 303 304 305 306 307 308 309
            main_program=test_prog)
    elif args.do_infer:
        if not args.init_checkpoint:
            raise ValueError("args 'init_checkpoint' should be set if"
                             "only doing validation or testing!")
        init_checkpoint(
            exe,
            args.init_checkpoint,
            main_program=infer_prog)
Y
Yibing Liu 已提交
310 311 312 313

    if args.do_train:
        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_iteration_per_drop_scope = 1
314

Y
Yibing Liu 已提交
315 316 317 318 319
        train_exe = fluid.ParallelExecutor(
            use_cuda=args.use_cuda,
            loss_name=loss.name,
            exec_strategy=exec_strategy,
            main_program=train_program)
320

Y
Yibing Liu 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
        train_pyreader.decorate_tensor_provider(train_data_generator)
    else:
        train_exe = None
    if args.do_val or args.do_infer:
        test_exe = exe

    if args.do_train:
        train_pyreader.start()
        steps = 0
        total_cost, total_acc, total_num_seqs = [], [], []
        time_begin = time.time()
        while True:
            try:
                steps += 1
                if steps % args.skip_steps == 0:
                    fetch_list = [loss.name, accuracy.name, num_seqs.name]
                else:
                    fetch_list = []

                outputs = train_exe.run(fetch_list=fetch_list, return_numpy=False)
                if steps % args.skip_steps == 0:
                    np_loss, np_acc, np_num_seqs = outputs
                    np_loss = np.array(np_loss)
                    np_acc = np.array(np_acc)
                    np_num_seqs = np.array(np_num_seqs)
                    total_cost.extend(np_loss * np_num_seqs)
                    total_acc.extend(np_acc * np_num_seqs)
                    total_num_seqs.extend(np_num_seqs)

                    if args.verbose:
                        verbose = "train pyreader queue size: %d, " % train_pyreader.queue.size()
                        print(verbose)

                    time_end = time.time()
                    used_time = time_end - time_begin
                    print("step: %d, ave loss: %f, "
                        "ave acc: %f, speed: %f steps/s" %
                        (steps, np.sum(total_cost) / np.sum(total_num_seqs),
                        np.sum(total_acc) / np.sum(total_num_seqs),
                        args.skip_steps / used_time))
                    total_cost, total_acc, total_num_seqs = [], [], []
                    time_begin = time.time()

                if steps % args.save_steps == 0:
                    save_path = os.path.join(args.checkpoints,
                                         "step_" + str(steps))
                    fluid.io.save_persistables(exe, save_path, train_program)

                if steps % args.validation_steps == 0:
                    # evaluate dev set
                    if args.do_val:
                        test_pyreader.decorate_tensor_provider(
                            reader.data_generator(
                                input_file=args.dev_set,
                                batch_size=args.batch_size,
                                phase='dev',
                                epoch=1,
                                shuffle=False))

                        evaluate(exe, test_prog, test_pyreader,
                                [loss.name, accuracy.name, num_seqs.name],
                                "dev")
383

Y
Yibing Liu 已提交
384 385 386 387 388 389 390
                        test_pyreader.decorate_tensor_provider(
                            reader.data_generator(
                                input_file=args.test_set,
                                batch_size=args.batch_size,
                                phase='infer',
                                epoch=1,
                                shuffle=False))
391

Y
Yibing Liu 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
                        evaluate(exe, test_prog, test_pyreader,
                                 [loss.name, accuracy.name, num_seqs.name],
                                 "infer")

            except fluid.core.EOFException:
                save_path = os.path.join(args.checkpoints, "step_" + str(steps))
                fluid.io.save_persistables(exe, save_path, train_program)
                train_pyreader.reset()
                break

    # final eval on dev set
    if args.do_val:
        test_pyreader.decorate_tensor_provider(
            reader.data_generator(
                input_file=args.dev_set,
                batch_size=args.batch_size, phase='dev', epoch=1,
                shuffle=False))
        print("Final validation result:")
        evaluate(exe, test_prog, test_pyreader,
            [loss.name, accuracy.name, num_seqs.name], "dev")

    # final eval on test set
    if args.do_infer:
        infer_pyreader.decorate_tensor_provider(
            reader.data_generator(
                input_file=args.test_set,
                batch_size=args.batch_size,
                phase='infer',
                epoch=1,
                shuffle=False))
        print("Final test result:")
        infer(exe, infer_prog, infer_pyreader,
            [probs.name], "infer")

if __name__ == "__main__":
    print_arguments(args)
    main(args)