tracker.py 15.2 KB
Newer Older
W
wangguanzhong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is based on https://github.com/noahcao/OC_SORT/blob/master/trackers/ocsort_tracker/ocsort.py
"""

import numpy as np
try:
    from filterpy.kalman import KalmanFilter
except:
    print(
        'Warning: Unable to use OC-SORT, please install filterpy, for example: `pip install filterpy`, see https://github.com/rlabbe/filterpy'
    )
    pass

from .matching.ocsort_matching import associate, linear_assignment, iou_batch

__all__ = ['OCSORTTracker']


def k_previous_obs(observations, cur_age, k):
    if len(observations) == 0:
        return [-1, -1, -1, -1, -1]
    for i in range(k):
        dt = k - i
        if cur_age - dt in observations:
            return observations[cur_age - dt]
    max_age = max(observations.keys())
    return observations[max_age]


def convert_bbox_to_z(bbox):
    """
    Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form
      [x,y,s,r] where x,y is the centre of the box and s is the scale/area and r is
      the aspect ratio
    """
    w = bbox[2] - bbox[0]
    h = bbox[3] - bbox[1]
    x = bbox[0] + w / 2.
    y = bbox[1] + h / 2.
    s = w * h  # scale is just area
    r = w / float(h + 1e-6)
    return np.array([x, y, s, r]).reshape((4, 1))


def convert_x_to_bbox(x, score=None):
    """
    Takes a bounding box in the centre form [x,y,s,r] and returns it in the form
      [x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right
    """
    w = np.sqrt(x[2] * x[3])
    h = x[2] / w
    if (score == None):
        return np.array(
            [x[0] - w / 2., x[1] - h / 2., x[0] + w / 2.,
             x[1] + h / 2.]).reshape((1, 4))
    else:
        score = np.array([score])
        return np.array([
            x[0] - w / 2., x[1] - h / 2., x[0] + w / 2., x[1] + h / 2., score
        ]).reshape((1, 5))


def speed_direction(bbox1, bbox2):
    cx1, cy1 = (bbox1[0] + bbox1[2]) / 2.0, (bbox1[1] + bbox1[3]) / 2.0
    cx2, cy2 = (bbox2[0] + bbox2[2]) / 2.0, (bbox2[1] + bbox2[3]) / 2.0
    speed = np.array([cy2 - cy1, cx2 - cx1])
    norm = np.sqrt((cy2 - cy1)**2 + (cx2 - cx1)**2) + 1e-6
    return speed / norm


class KalmanBoxTracker(object):
    """
    This class represents the internal state of individual tracked objects observed as bbox.

    Args:
        bbox (np.array): bbox in [x1,y1,x2,y2,score] format.
        delta_t (int): delta_t of previous observation
    """
    count = 0

    def __init__(self, bbox, delta_t=3):
        try:
            from filterpy.kalman import KalmanFilter
        except Exception as e:
            raise RuntimeError(
                'Unable to use OC-SORT, please install filterpy, for example: `pip install filterpy`, see https://github.com/rlabbe/filterpy'
            )
        self.kf = KalmanFilter(dim_x=7, dim_z=4)
        self.kf.F = np.array([[1, 0, 0, 0, 1, 0, 0], [0, 1, 0, 0, 0, 1, 0],
                              [0, 0, 1, 0, 0, 0, 1], [0, 0, 0, 1, 0, 0, 0],
                              [0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0],
                              [0, 0, 0, 0, 0, 0, 1]])
        self.kf.H = np.array([[1, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0],
                              [0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0]])
        self.kf.R[2:, 2:] *= 10.
        self.kf.P[4:, 4:] *= 1000.
        # give high uncertainty to the unobservable initial velocities
        self.kf.P *= 10.
        self.kf.Q[-1, -1] *= 0.01
        self.kf.Q[4:, 4:] *= 0.01

        self.score = bbox[4]
        self.kf.x[:4] = convert_bbox_to_z(bbox)
        self.time_since_update = 0
        self.id = KalmanBoxTracker.count
        KalmanBoxTracker.count += 1
        self.history = []
        self.hits = 0
        self.hit_streak = 0
        self.age = 0
        """
        NOTE: [-1,-1,-1,-1,-1] is a compromising placeholder for non-observation status, the same for the return of 
        function k_previous_obs. It is ugly and I do not like it. But to support generate observation array in a 
        fast and unified way, which you would see below k_observations = np.array([k_previous_obs(...]]), let's bear it for now.
        """
        self.last_observation = np.array([-1, -1, -1, -1, -1])  # placeholder
        self.observations = dict()
        self.history_observations = []
        self.velocity = None
        self.delta_t = delta_t

    def update(self, bbox):
        """
        Updates the state vector with observed bbox.
        """
        if bbox is not None:
            if self.last_observation.sum() >= 0:  # no previous observation
                previous_box = None
                for i in range(self.delta_t):
                    dt = self.delta_t - i
                    if self.age - dt in self.observations:
                        previous_box = self.observations[self.age - dt]
                        break
                if previous_box is None:
                    previous_box = self.last_observation
                """
                  Estimate the track speed direction with observations \Delta t steps away
                """
                self.velocity = speed_direction(previous_box, bbox)
            """
              Insert new observations. This is a ugly way to maintain both self.observations
              and self.history_observations. Bear it for the moment.
            """
            self.last_observation = bbox
            self.observations[self.age] = bbox
            self.history_observations.append(bbox)

            self.time_since_update = 0
            self.history = []
            self.hits += 1
            self.hit_streak += 1
            self.kf.update(convert_bbox_to_z(bbox))
        else:
            self.kf.update(bbox)

    def predict(self):
        """
        Advances the state vector and returns the predicted bounding box estimate.
        """
        if ((self.kf.x[6] + self.kf.x[2]) <= 0):
            self.kf.x[6] *= 0.0

        self.kf.predict()
        self.age += 1
        if (self.time_since_update > 0):
            self.hit_streak = 0
        self.time_since_update += 1
        self.history.append(convert_x_to_bbox(self.kf.x, score=self.score))
        return self.history[-1]

    def get_state(self):
        return convert_x_to_bbox(self.kf.x, score=self.score)


class OCSORTTracker(object):
    """
    OCSORT tracker, support single class

    Args:
        det_thresh (float): threshold of detection score
        max_age (int): maximum number of missed misses before a track is deleted
        min_hits (int): minimum hits for associate
        iou_threshold (float): iou threshold for associate
        delta_t (int): delta_t of previous observation
        inertia (float): vdc_weight of angle_diff_cost for associate
        vertical_ratio (float): w/h, the vertical ratio of the bbox to filter
            bad results. If set <= 0 means no need to filter bboxes,usually set
            1.6 for pedestrian tracking.
        min_box_area (int): min box area to filter out low quality boxes
        use_byte (bool): Whether use ByteTracker, default False
    """

    def __init__(self,
                 det_thresh=0.6,
                 max_age=30,
                 min_hits=3,
                 iou_threshold=0.3,
                 delta_t=3,
                 inertia=0.2,
                 vertical_ratio=-1,
                 min_box_area=0,
                 use_byte=False):
        self.det_thresh = det_thresh
        self.max_age = max_age
        self.min_hits = min_hits
        self.iou_threshold = iou_threshold
        self.delta_t = delta_t
        self.inertia = inertia
        self.vertical_ratio = vertical_ratio
        self.min_box_area = min_box_area
        self.use_byte = use_byte

        self.trackers = []
        self.frame_count = 0
        KalmanBoxTracker.count = 0

    def update(self, pred_dets, pred_embs=None):
        """
        Args:
            pred_dets (np.array): Detection results of the image, the shape is
                [N, 6], means 'cls_id, score, x0, y0, x1, y1'.
            pred_embs (np.array): Embedding results of the image, the shape is
                [N, 128] or [N, 512], default as None.

        Return:
            tracking boxes (np.array): [M, 6], means 'x0, y0, x1, y1, score, id'.
        """
        if pred_dets is None:
            return np.empty((0, 6))

        self.frame_count += 1

        bboxes = pred_dets[:, 2:]
        scores = pred_dets[:, 1:2]
        dets = np.concatenate((bboxes, scores), axis=1)
        scores = scores.squeeze(-1)

        inds_low = scores > 0.1
        inds_high = scores < self.det_thresh
        inds_second = np.logical_and(inds_low, inds_high)
        # self.det_thresh > score > 0.1, for second matching
        dets_second = dets[inds_second]  # detections for second matching
        remain_inds = scores > self.det_thresh
        dets = dets[remain_inds]

        # get predicted locations from existing trackers.
        trks = np.zeros((len(self.trackers), 5))
        to_del = []
        ret = []
        for t, trk in enumerate(trks):
            pos = self.trackers[t].predict()[0]
            trk[:] = [pos[0], pos[1], pos[2], pos[3], 0]
            if np.any(np.isnan(pos)):
                to_del.append(t)
        trks = np.ma.compress_rows(np.ma.masked_invalid(trks))
        for t in reversed(to_del):
            self.trackers.pop(t)

        velocities = np.array([
            trk.velocity if trk.velocity is not None else np.array((0, 0))
            for trk in self.trackers
        ])
        last_boxes = np.array([trk.last_observation for trk in self.trackers])
        k_observations = np.array([
            k_previous_obs(trk.observations, trk.age, self.delta_t)
            for trk in self.trackers
        ])
        """
            First round of association
        """
        matched, unmatched_dets, unmatched_trks = associate(
            dets, trks, self.iou_threshold, velocities, k_observations,
            self.inertia)
        for m in matched:
            self.trackers[m[1]].update(dets[m[0], :])
        """
            Second round of associaton by OCR
        """
        # BYTE association
        if self.use_byte and len(dets_second) > 0 and unmatched_trks.shape[
                0] > 0:
            u_trks = trks[unmatched_trks]
            iou_left = iou_batch(
                dets_second,
                u_trks)  # iou between low score detections and unmatched tracks
            iou_left = np.array(iou_left)
            if iou_left.max() > self.iou_threshold:
                """
                    NOTE: by using a lower threshold, e.g., self.iou_threshold - 0.1, you may
                    get a higher performance especially on MOT17/MOT20 datasets. But we keep it
                    uniform here for simplicity
                """
                matched_indices = linear_assignment(-iou_left)
                to_remove_trk_indices = []
                for m in matched_indices:
                    det_ind, trk_ind = m[0], unmatched_trks[m[1]]
                    if iou_left[m[0], m[1]] < self.iou_threshold:
                        continue
                    self.trackers[trk_ind].update(dets_second[det_ind, :])
                    to_remove_trk_indices.append(trk_ind)
                unmatched_trks = np.setdiff1d(unmatched_trks,
                                              np.array(to_remove_trk_indices))

        if unmatched_dets.shape[0] > 0 and unmatched_trks.shape[0] > 0:
            left_dets = dets[unmatched_dets]
            left_trks = last_boxes[unmatched_trks]
            iou_left = iou_batch(left_dets, left_trks)
            iou_left = np.array(iou_left)
            if iou_left.max() > self.iou_threshold:
                """
                    NOTE: by using a lower threshold, e.g., self.iou_threshold - 0.1, you may
                    get a higher performance especially on MOT17/MOT20 datasets. But we keep it
                    uniform here for simplicity
                """
                rematched_indices = linear_assignment(-iou_left)
                to_remove_det_indices = []
                to_remove_trk_indices = []
                for m in rematched_indices:
                    det_ind, trk_ind = unmatched_dets[m[0]], unmatched_trks[m[
                        1]]
                    if iou_left[m[0], m[1]] < self.iou_threshold:
                        continue
                    self.trackers[trk_ind].update(dets[det_ind, :])
                    to_remove_det_indices.append(det_ind)
                    to_remove_trk_indices.append(trk_ind)
                unmatched_dets = np.setdiff1d(unmatched_dets,
                                              np.array(to_remove_det_indices))
                unmatched_trks = np.setdiff1d(unmatched_trks,
                                              np.array(to_remove_trk_indices))

        for m in unmatched_trks:
            self.trackers[m].update(None)

        # create and initialise new trackers for unmatched detections
        for i in unmatched_dets:
            trk = KalmanBoxTracker(dets[i, :], delta_t=self.delta_t)
            self.trackers.append(trk)
        i = len(self.trackers)
        for trk in reversed(self.trackers):
            if trk.last_observation.sum() < 0:
                d = trk.get_state()[0]
            else:
                d = trk.last_observation  # tlbr + score
            if (trk.time_since_update < 1) and (
                    trk.hit_streak >= self.min_hits or
                    self.frame_count <= self.min_hits):
                # +1 as MOT benchmark requires positive
                ret.append(np.concatenate((d, [trk.id + 1])).reshape(1, -1))
            i -= 1
            # remove dead tracklet
            if (trk.time_since_update > self.max_age):
                self.trackers.pop(i)
        if (len(ret) > 0):
            return np.concatenate(ret)
        return np.empty((0, 6))

    def tracking(self, pred_dets, pred_embs, output_keys):
        online_targets = self.update(pred_dets, pred_embs)
        tracking_bboxes, tracking_scores = [], []
        tracking_ids, tracking_cls_ids = [], []
        for t in online_targets:
            x1, y1, x2, y2 = t[:4]
            w, h = x2 - x1, y2 - y1
            tscore = float(t[4])
            tid = int(t[5])
            if w * h <= self.min_box_area: continue
            if self.vertical_ratio > 0 and w / h > self.vertical_ratio:
                continue
            if w * h > 0:
                tracking_bboxes.append([x1, y1, x2, y2])
                tracking_scores.append(tscore)
                tracking_ids.append(tid)
                # only support 1 class now
                tracking_cls_ids.append(0)
        tracking_outs = {
            output_keys[0]: tracking_bboxes,
            output_keys[1]: tracking_scores,
            output_keys[2]: tracking_ids,
            output_keys[3]: tracking_cls_ids
        }
        return tracking_outs