# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import random from args import parse_args from functools import partial import numpy as np import paddle import paddle.fluid as fluid from paddle.fluid.io import DataLoader from paddle.static import InputSpec as Input from seq2seq_base import BaseModel, CrossEntropyCriterion from seq2seq_attn import AttentionModel from reader import create_data_loader from utility import PPL, TrainCallback, get_model_cls def do_train(args): device = paddle.set_device("gpu" if args.use_gpu else "cpu") fluid.enable_dygraph(device) if args.eager_run else None if args.enable_ce: fluid.default_main_program().random_seed = 102 fluid.default_startup_program().random_seed = 102 # define model inputs = [ Input( [None, None], "int64", name="src_word"), Input( [None], "int64", name="src_length"), Input( [None, None], "int64", name="trg_word"), ] labels = [ Input( [None], "int64", name="trg_length"), Input( [None, None, 1], "int64", name="label"), ] # def dataloader train_loader, eval_loader = create_data_loader(args, device) model_maker = get_model_cls( AttentionModel) if args.attention else get_model_cls(BaseModel) model = paddle.Model( model_maker(args.src_vocab_size, args.tar_vocab_size, args.hidden_size, args.hidden_size, args.num_layers, args.dropout), inputs=inputs, labels=labels) grad_clip = fluid.clip.GradientClipByGlobalNorm( clip_norm=args.max_grad_norm) optimizer = fluid.optimizer.Adam( learning_rate=args.learning_rate, parameter_list=model.parameters(), grad_clip=grad_clip) ppl_metric = PPL(reset_freq=100) # ppl for every 100 batches model.prepare(optimizer, CrossEntropyCriterion(), ppl_metric) model.fit(train_data=train_loader, eval_data=eval_loader, epochs=args.max_epoch, eval_freq=1, save_freq=1, save_dir=args.model_path, callbacks=[TrainCallback(ppl_metric, args.log_freq)]) if __name__ == "__main__": args = parse_args() do_train(args)