# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import random from functools import partial import numpy as np import paddle.fluid as fluid from paddle.fluid.io import DataLoader from hapi.model import Input, set_device from args import parse_args from seq2seq_base import BaseModel, CrossEntropyCriterion from seq2seq_attn import AttentionModel from reader import create_data_loader from utility import PPL, TrainCallback def do_train(args): device = set_device("gpu" if args.use_gpu else "cpu") fluid.enable_dygraph(device) if args.eager_run else None if args.enable_ce: fluid.default_main_program().random_seed = 102 fluid.default_startup_program().random_seed = 102 # define model inputs = [ Input( [None, None], "int64", name="src_word"), Input( [None], "int64", name="src_length"), Input( [None, None], "int64", name="trg_word"), ] labels = [ Input( [None], "int64", name="trg_length"), Input( [None, None, 1], "int64", name="label"), ] # def dataloader train_loader, eval_loader = create_data_loader(args, device) model_maker = AttentionModel if args.attention else BaseModel model = model_maker(args.src_vocab_size, args.tar_vocab_size, args.hidden_size, args.hidden_size, args.num_layers, args.dropout) grad_clip = fluid.clip.GradientClipByGlobalNorm( clip_norm=args.max_grad_norm) optimizer = fluid.optimizer.Adam( learning_rate=args.learning_rate, parameter_list=model.parameters(), grad_clip=grad_clip) ppl_metric = PPL(reset_freq=100) # ppl for every 100 batches model.prepare( optimizer, CrossEntropyCriterion(), ppl_metric, inputs=inputs, labels=labels) model.fit(train_data=train_loader, eval_data=eval_loader, epochs=args.max_epoch, eval_freq=1, save_freq=1, save_dir=args.model_path, callbacks=[TrainCallback(ppl_metric, args.log_freq)]) if __name__ == "__main__": args = parse_args() do_train(args)