# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import glob import numpy as np import argparse from PIL import Image from scipy.misc import imsave import paddle import paddle.fluid as fluid from paddle.static import InputSpec as Input from check import check_gpu, check_version from cyclegan import Generator, GeneratorCombine def main(): place = paddle.set_device(FLAGS.device) fluid.enable_dygraph(place) if FLAGS.dynamic else None im_shape = [-1, 3, 256, 256] input_A = Input(im_shape, 'float32', 'input_A') input_B = Input(im_shape, 'float32', 'input_B') # Generators g_AB = Generator() g_BA = Generator() g = paddle.Model( GeneratorCombine( g_AB, g_BA, is_train=False), inputs=[input_A, input_B]) g.prepare() g.load(FLAGS.init_model, skip_mismatch=True, reset_optimizer=True) out_path = FLAGS.output + "/single" if not os.path.exists(out_path): os.makedirs(out_path) for f in glob.glob(FLAGS.input): image_name = os.path.basename(f) image = Image.open(f).convert('RGB') image = image.resize((256, 256), Image.BICUBIC) image = np.array(image) / 127.5 - 1 image = image[:, :, 0:3].astype("float32") data = image.transpose([2, 0, 1])[np.newaxis, :] if FLAGS.input_style == "A": _, fake, _, _ = g.test_batch([data, data]) if FLAGS.input_style == "B": fake, _, _, _ = g.test_batch([data, data]) fake = np.squeeze(fake[0]).transpose([1, 2, 0]) opath = "{}/fake{}{}".format(out_path, FLAGS.input_style, image_name) imsave(opath, ((fake + 1) * 127.5).astype(np.uint8)) print("transfer {} to {}".format(f, opath)) if __name__ == "__main__": parser = argparse.ArgumentParser("CycleGAN inference") parser.add_argument( "-d", "--dynamic", action='store_true', help="Enable dygraph mode") parser.add_argument( "-p", "--device", type=str, default='gpu', help="device to use, gpu or cpu") parser.add_argument( "-i", "--input", type=str, default='./image/testA/123_A.jpg', help="input image") parser.add_argument( "-o", '--output', type=str, default='output', help="The test result to be saved to.") parser.add_argument( "-m", "--init_model", type=str, default='checkpoint/199', help="The init model file of directory.") parser.add_argument( "-s", "--input_style", type=str, default='A', help="A or B") FLAGS = parser.parse_args() print(FLAGS) check_gpu(str.lower(FLAGS.device) == 'gpu') check_version() main()