# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import argparse import os import sys import logging import paddle.fluid as fluid from hapi.model import set_device, Input from hapi.vision.models import BMN, BmnLoss from bmn_metric import BmnMetric from reader import BmnDataset from config_utils import * DATATYPE = 'float32' logging.root.handlers = [] FORMAT = '[%(levelname)s: %(filename)s: %(lineno)4d]: %(message)s' logging.basicConfig(level=logging.INFO, format=FORMAT, stream=sys.stdout) logger = logging.getLogger(__name__) def parse_args(): parser = argparse.ArgumentParser("BMN test for performance evaluation.") parser.add_argument( "-d", "--dynamic", default=True, action='store_true', help="enable dygraph mode, only support dynamic mode at present time") parser.add_argument( '--config_file', type=str, default='bmn.yaml', help='path to config file of model') parser.add_argument( '--device', type=str, default='gpu', help='gpu or cpu, default use gpu.') parser.add_argument( '--weights', type=str, default="checkpoint/final", help='weight path, None to automatically download weights provided by Paddle.' ) parser.add_argument( '--log_interval', type=int, default=1, help='mini-batch interval to log.') args = parser.parse_args() return args # Performance Evaluation def test_bmn(args): # only support dynamic mode at present time device = set_device(args.device) fluid.enable_dygraph(device) if args.dynamic else None config = parse_config(args.config_file) eval_cfg = merge_configs(config, 'test', vars(args)) if not os.path.isdir(config.TEST.output_path): os.makedirs(config.TEST.output_path) if not os.path.isdir(config.TEST.result_path): os.makedirs(config.TEST.result_path) inputs = [ Input( [None, config.MODEL.feat_dim, config.MODEL.tscale], 'float32', name='feat_input') ] gt_iou_map = Input( [None, config.MODEL.dscale, config.MODEL.tscale], 'float32', name='gt_iou_map') gt_start = Input([None, config.MODEL.tscale], 'float32', name='gt_start') gt_end = Input([None, config.MODEL.tscale], 'float32', name='gt_end') video_idx = Input([None, 1], 'int64', name='video_idx') labels = [gt_iou_map, gt_start, gt_end, video_idx] #data eval_dataset = BmnDataset(eval_cfg, 'test') #model model = BMN(config, args.dynamic) model.prepare( loss_function=BmnLoss(config), metrics=BmnMetric( config, mode='test'), inputs=inputs, labels=labels, device=device) #load checkpoint if args.weights: assert os.path.exists(args.weights + '.pdparams'), \ "Given weight dir {} not exist.".format(args.weights) logger.info('load test weights from {}'.format(args.weights)) model.load(args.weights) model.evaluate( eval_data=eval_dataset, batch_size=eval_cfg.TEST.batch_size, num_workers=eval_cfg.TEST.num_workers, log_freq=args.log_interval) logger.info("[EVAL] eval finished") if __name__ == '__main__': args = parse_args() test_bmn(args)