# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import random import numpy as np from PIL import Image, ImageOps DATASET = "cityscapes" A_LIST_FILE = "./data/" + DATASET + "/trainA.txt" B_LIST_FILE = "./data/" + DATASET + "/trainB.txt" A_TEST_LIST_FILE = "./data/" + DATASET + "/testA.txt" B_TEST_LIST_FILE = "./data/" + DATASET + "/testB.txt" IMAGES_ROOT = "./data/" + DATASET + "/" import paddle.fluid as fluid class Cityscapes(paddle.io.Dataset): def __init__(self, root_path, file_path, mode='train', return_name=False): self.root_path = root_path self.file_path = file_path self.mode = mode self.return_name = return_name self.images = [root_path + l for l in open(file_path, 'r').readlines()] def _train(self, image): ## Resize image = image.resize((286, 286), Image.BICUBIC) ## RandomCrop i = np.random.randint(0, 30) j = np.random.randint(0, 30) image = image.crop((i, j, i + 256, j + 256)) # RandomHorizontalFlip if np.random.rand() > 0.5: image = ImageOps.mirror(image) return image def __getitem__(self, idx): f = self.images[idx].strip("\n\r\t ") image = Image.open(f) if self.mode == 'train': image = self._train(image) else: image = image.resize((256, 256), Image.BICUBIC) # ToTensor image = np.array(image).transpose([2, 0, 1]).astype('float32') image = image / 255.0 # Normalize, mean=[0.5,0.5,0.5], std=[0.5,0.5,0.5] image = (image - 0.5) / 0.5 if self.return_name: return [image], os.path.basename(f) else: return [image] def __len__(self): return len(self.images) def DataA(root=IMAGES_ROOT, fpath=A_LIST_FILE): """ Reader of images with A style for training. """ return Cityscapes(root, fpath) def DataB(root=IMAGES_ROOT, fpath=B_LIST_FILE): """ Reader of images with B style for training. """ return Cityscapes(root, fpath) def TestDataA(root=IMAGES_ROOT, fpath=A_TEST_LIST_FILE): """ Reader of images with A style for training. """ return Cityscapes(root, fpath, mode='test', return_name=True) def TestDataB(root=IMAGES_ROOT, fpath=B_TEST_LIST_FILE): """ Reader of images with B style for training. """ return Cityscapes(root, fpath, mode='test', return_name=True) class ImagePool(object): def __init__(self, pool_size=50): self.pool = [] self.count = 0 self.pool_size = pool_size def get(self, image): if self.count < self.pool_size: self.pool.append(image) self.count += 1 return image else: p = random.random() if p > 0.5: random_id = random.randint(0, self.pool_size - 1) temp = self.pool[random_id] self.pool[random_id] = image return temp else: return image