# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import io import random from functools import partial import numpy as np import paddle.fluid as fluid from paddle.fluid.layers.utils import flatten from paddle.fluid.io import DataLoader from paddle.incubate.hapi.model import Input, set_device from args import parse_args from seq2seq_base import BaseInferModel from seq2seq_attn import AttentionInferModel from reader import Seq2SeqDataset, Seq2SeqBatchSampler, SortType, prepare_infer_input def post_process_seq(seq, bos_idx, eos_idx, output_bos=False, output_eos=False): """ Post-process the decoded sequence. """ eos_pos = len(seq) - 1 for i, idx in enumerate(seq): if idx == eos_idx: eos_pos = i break seq = [ idx for idx in seq[:eos_pos + 1] if (output_bos or idx != bos_idx) and (output_eos or idx != eos_idx) ] return seq def do_predict(args): device = set_device("gpu" if args.use_gpu else "cpu") fluid.enable_dygraph(device) if args.eager_run else None # define model inputs = [ Input( [None, None], "int64", name="src_word"), Input( [None], "int64", name="src_length"), ] # def dataloader dataset = Seq2SeqDataset( fpattern=args.infer_file, src_vocab_fpath=args.vocab_prefix + "." + args.src_lang, trg_vocab_fpath=args.vocab_prefix + "." + args.tar_lang, token_delimiter=None, start_mark="", end_mark="", unk_mark="") trg_idx2word = Seq2SeqDataset.load_dict( dict_path=args.vocab_prefix + "." + args.tar_lang, reverse=True) (args.src_vocab_size, args.trg_vocab_size, bos_id, eos_id, unk_id) = dataset.get_vocab_summary() batch_sampler = Seq2SeqBatchSampler( dataset=dataset, use_token_batch=False, batch_size=args.batch_size) data_loader = DataLoader( dataset=dataset, batch_sampler=batch_sampler, places=device, collate_fn=partial( prepare_infer_input, bos_id=bos_id, eos_id=eos_id, pad_id=eos_id), num_workers=0, return_list=True) model_maker = AttentionInferModel if args.attention else BaseInferModel model = model_maker( args.src_vocab_size, args.tar_vocab_size, args.hidden_size, args.hidden_size, args.num_layers, args.dropout, bos_id=bos_id, eos_id=eos_id, beam_size=args.beam_size, max_out_len=256) model.prepare(inputs=inputs, device=device) # load the trained model assert args.reload_model, ( "Please set reload_model to load the infer model.") model.load(args.reload_model) # TODO(guosheng): use model.predict when support variant length with io.open(args.infer_output_file, 'w', encoding='utf-8') as f: for data in data_loader(): finished_seq = model.test_batch(inputs=flatten(data))[0] finished_seq = finished_seq[:, :, np.newaxis] if len( finished_seq.shape) == 2 else finished_seq finished_seq = np.transpose(finished_seq, [0, 2, 1]) for ins in finished_seq: for beam_idx, beam in enumerate(ins): id_list = post_process_seq(beam, bos_id, eos_id) word_list = [trg_idx2word[id] for id in id_list] sequence = " ".join(word_list) + "\n" f.write(sequence) break if __name__ == "__main__": args = parse_args() do_predict(args)