# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import inspect import os import pickle from collections import OrderedDict import numpy as np from paddle import fluid from paddle.fluid.framework import in_dygraph_mode, Variable from paddle.fluid.executor import global_scope from paddle.fluid.io import is_belong_to_optimizer from paddle.fluid.dygraph.base import to_variable __all__ = ['Model', 'shape_hints'] LOSS_DTYPE_MAP = { 'cross_entropy': 'int64' } def to_list(value): if isinstance(value, (list, tuple)): return value return [value] def to_numpy(var): assert isinstance(var, (Variable, fluid.core.VarBase)), "not a variable" if isinstance(var, fluid.core.VarBase): return var.numpy() t = global_scope().find_var(var.name).get_tensor() return np.array(t) def extract_args(func): if hasattr(inspect, 'getfullargspec'): return inspect.getfullargspec(func)[0] else: return inspect.getargspec(func)[0] def shape_hints(**hints): assert hints, "hints can not be empty" assert all(isinstance(h, (list, tuple)) for h in hints.values()), \ "shape hint must be a list or tuple" def wrapper(func): args = extract_args(func) invalid = set(hints.keys()) - set(args) assert not invalid, \ "shape hint for arguments that are not present in forward method" \ + ": ({})".format(", ".join(invalid)) func.shape_hints = hints return func return wrapper class StaticGraphAdapter(object): def __init__(self, model): super(StaticGraphAdapter, self).__init__() self.model = model # with `_build_once` gone, parameters are now created in `__init__` # so we need to keep track of the parameters already created self._startup_prog = fluid.default_startup_program() self._main_prog = fluid.default_main_program() self._label_vars = None # label variables self._endpoints = {} self._loss_endpoint = None self._executor = None self._progs = {} self._compiled_progs = {} # parse shape hints self._input_desc = OrderedDict([ (n, None) for n in extract_args(self.model.forward) if n != 'self' ]) if hasattr(self.model.forward, 'shape_hints'): self._input_desc.update(self.model.forward.shape_hints) @property def mode(self): return self.model.mode @mode.setter def mode(self, value): self.model.mode = value def train(self, inputs, labels, device='CPU', device_ids=None): assert self.model._optimizer and self.model._loss_functions, \ "model not ready, please call `model.prepare()` first" self.mode = 'train' return self._run(inputs, labels, device, device_ids) def eval(self, inputs, labels, device='CPU', device_ids=None): assert self.model._loss_functions, \ "model not ready, please call `model.prepare()` first" self.mode = 'eval' return self._run(inputs, labels, device, device_ids) def test(self, inputs, device='CPU', device_ids=None): self.mode = 'test' return self._run(inputs, None, device, device_ids) def parameters(self, *args, **kwargs): return None def save(self, path): def _save(state, path): if not state: return state = {k: to_numpy(v) if isinstance(v, Variable) else v for k, v in state.items()} with open(path, 'wb') as f: pickle.dump(state, f) base = os.path.basename(path) assert base != "", "path should be of 'dirname/filename' format" param_path = path + ".pdparams" _save(self.model.state_dict(), param_path) prog = self._progs.get('train', None) if prog is None or self.model._optimizer is None: return # XXX `optimizer.state_dict()` only work in dygraph mode optim_path = path + ".pdopt" optim = {p.name: p for p in filter( is_belong_to_optimizer, prog.list_vars())} # HACK this is contrived, optimizer state is not the same for # static/dynamic graph mode optim['__static_graph_only__'] = True _save(optim, optim_path) def load(self, path): def _load(path): if not os.path.exists(path): return with open(path, 'rb') as f: return pickle.load(f) def set_var(var, ndarray): t = global_scope().find_var(var.name).get_tensor() p = t._place() if p.is_cpu_place(): place = fluid.CPUPlace() elif p.is_cuda_pinned_place(): place = fluid.CUDAPinnedPlace() else: p = fluid.core.Place() p.set_place(t._place()) place = fluid.CUDAPlace(p.gpu_device_id()) t.set(ndarray, place) param_path = path + ".pdparams" params = _load(param_path) assert params, "failed to load parameters, please check path" for key, var in self.model.state_dict().items(): assert key in params, \ "parameter [{}] is not found in model file [{}]".format( key, param_path) set_var(var, params[key]) # FIXME what if a different optimizer is used? if not self.model._optimizer: return prog = self._progs.get('train', None) optim = list(filter(is_belong_to_optimizer, prog.list_vars())) if not optim: return optim_path = path + ".pdopt" optim_state = _load(optim_path) if optim_state is None: return assert '__static_graph_only__' in optim_state, \ "optimizer saved in dygraph mode is not usable in static graph" fluid.core._create_loaded_parameter( optim, global_scope(), self._executor._default_executor) for var in optim: assert var.name in optim_state, \ "variable [{}] is not found in model file [{}]".format( var.name, optim_path) set_var(var, optim_state[var.name]) def _run(self, inputs, labels=None, device='CPU', device_ids=None): inputs = to_list(inputs) if labels is not None: labels = to_list(labels) assert len(inputs) == len(self._input_desc), "number of inputs" \ + " does not match number of arguments of `forward` method" if self._progs.get(self.mode, None) is None: self._make_program(self._infer_input_vars(inputs)) ids = [str(i) for i in device_ids] ids.sort() prog_hash = '_'.join([self.mode] + ids) compiled_prog = self._compiled_progs.get(prog_hash, None) if compiled_prog is None: compiled_prog = self._compile_and_initialize( self._progs[self.mode], device, device_ids) self._compiled_progs[prog_hash] = compiled_prog feed = {} input_names = [name for name in self._input_desc.keys()] for idx, n in enumerate(input_names): # train and test may take different arguments if inputs[idx] is not None: feed[n] = inputs[idx] if labels is not None: for idx, v in enumerate(self._label_vars): feed[v.name] = labels[idx] endpoints = self._endpoints[self.mode] fetch_list = endpoints['output'] + endpoints['loss'] num_output = len(endpoints['output']) out = self._executor.run( compiled_prog, feed=feed, fetch_list=fetch_list) if self.mode == 'test': return out[:num_output] else: return out[:num_output], out[num_output:] def _make_program(self, inputs): prog = self._main_prog.clone(self.mode != 'train') with fluid.program_guard(prog, self._startup_prog): outputs = to_list(self.model.forward(*inputs)) losses = [] label_vars = [] if self.mode != 'test': loss_weights = self.model._loss_weights if loss_weights is None: loss_weights = [1. for _ in self.model._loss_functions] for o, l, w in zip(outputs, self.model._loss_functions, loss_weights): if l is None: continue label_var = self._infer_label_var(o, l) label_vars.append(label_var) loss_fn = getattr(fluid.layers, l) loss = loss_fn(o, label_var) losses.append(fluid.layers.reduce_mean(loss) * w) if self.mode == 'train': self._label_vars = label_vars self._loss_endpoint = fluid.layers.sum(losses) self.model._optimizer.minimize(self._loss_endpoint) self._progs[self.mode] = prog self._endpoints[self.mode] = { "output": outputs, "loss": losses } def _infer_input_vars(self, inputs): input_vars = [] for idx, i in enumerate(inputs): if i is None: # train and test may take different arguments input_vars.append(None) continue ndarray = np.array(i) name = list(self._input_desc.keys())[idx] shape = list(self._input_desc.values())[idx] if shape is None: shape = (None, ) + ndarray.shape[1:] input_vars.append(fluid.data(name, shape, ndarray.dtype)) return input_vars # TODO wrap loss in callable classes # - same call signaure # - infer_shape method? or same shape as y_pred (e.g., one hot) # - split multiple dtype loss functions (e.g., soft label) def _infer_label_var(self, output, loss): name = output.name + '.label' shape = output.shape # XXX could get ugly very quickly if loss == 'cross_entropy': shape = shape[:-1] + (1, ) dtype = LOSS_DTYPE_MAP.get(loss, output.dtype) return fluid.data(name, shape, dtype) def _compile_and_initialize(self, prog, device='CPU', device_ids=None): if device.lower() == 'cpu': place = fluid.CPUPlace() elif device.lower() == 'gpu' and isinstance(device_ids, (list, tuple)): place = fluid.CUDAPlace(device_ids[0]) else: raise "device not supported" compiled_prog = fluid.CompiledProgram(prog) if device.lower() == 'gpu' and len(device_ids) > 0: places = [fluid.CUDAPlace(i) for i in device_ids] loss_name = None if self._loss_endpoint is not None: loss_name = self._loss_endpoint.name compiled_prog = compiled_prog.with_data_parallel( loss_name=loss_name, places=places) if self._executor is None: self._executor = fluid.Executor(place) # XXX only run startup once as *ALL* weights should be initialized # upon construction of the model # XXX incremental initialization, lifted from GuoSheng code uninitialized = [] for var_py in self._startup_prog.list_vars(): var = fluid.global_scope().find_var(var_py.name) if var and var.get_tensor()._is_initialized(): continue uninitialized.append(var_py) if uninitialized: startup_prog = self._startup_prog._prune(uninitialized) self._executor.run(startup_prog) return compiled_prog class DynamicGraphAdapter(object): def __init__(self, model): super(DynamicGraphAdapter, self).__init__() self.model = model @property def mode(self): return self.model.mode @mode.setter def mode(self, value): self.model.mode = value def train(self, inputs, labels, device='CPU', device_ids=None): assert self.model._optimizer and self.model._loss_functions, \ "model not ready, please call `model.prepare()` first" super(Model, self.model).train() self.mode = 'train' inputs = to_list(inputs) labels = to_list(labels) outputs = self.model.forward(*[to_variable(x) for x in inputs]) losses = self._loss(outputs, labels) final_loss = fluid.layers.sum(losses) final_loss.backward() self.model._optimizer.minimize(final_loss) self.model.clear_gradients() return [to_numpy(o) for o in to_list(outputs)], \ [to_numpy(l) for l in losses] def eval(self, inputs, labels, device='CPU', device_ids=None): assert self.model._loss_functions, \ "model not ready, please call `model.prepare()` first" super(Model, self.model).train() self.mode = 'eval' inputs = to_list(inputs) labels = to_list(labels) outputs = self.model.forward(*[to_variable(x) for x in inputs]) losses = self._loss(outputs, labels) return [to_numpy(o) for o in to_list(outputs)], \ [to_numpy(l) for l in losses] def test(self, inputs, device='CPU', device_ids=None): super(Model, self.model).train() self.mode = 'test' inputs = [to_variable(x) for x in to_list(inputs)] outputs = self.model.forward(*inputs) return [to_numpy(o) for o in to_list(outputs)] def parameters(self, *args, **kwargs): return super(Model, self.model).parameters(*args, **kwargs) def save(self, path): params = self.model.state_dict() fluid.save_dygraph(params, path) if self.model._optimizer is None: return if self.model._optimizer.state_dict(): optim = self.model._optimizer.state_dict() fluid.save_dygraph(optim, path) def load(self, path): params, optim = fluid.load_dygraph(path) self.model.set_dict(params) if self.model._optimizer is None or optim is None: return self.model._optimizer.set_dict(optim) def _loss(self, pred, labels): losses = [] loss_weights = self.model._loss_weights if loss_weights is None: loss_weights = [1. for _ in self.model._loss_functions] for o, l, w, t in zip(to_list(pred), self.model._loss_functions, loss_weights, labels): if l is None: continue loss_fn = getattr(fluid.layers, l) loss = loss_fn(o, to_variable(t)) losses.append(fluid.layers.reduce_mean(loss) * w) return losses class Model(fluid.dygraph.Layer): def __init__(self): super(Model, self).__init__(self.__class__.__name__) self.mode = 'train' self._loss_functions = [] self._loss_weights = None self._optimizer = None if in_dygraph_mode(): self._adapter = DynamicGraphAdapter(self) else: self._adapter = StaticGraphAdapter(self) def train(self, *args, **kwargs): return self._adapter.train(*args, **kwargs) def eval(self, *args, **kwargs): return self._adapter.eval(*args, **kwargs) def test(self, *args, **kwargs): return self._adapter.test(*args, **kwargs) def save(self, *args, **kwargs): return self._adapter.save(*args, **kwargs) def load(self, *args, **kwargs): return self._adapter.load(*args, **kwargs) def prepare(self, optimizer, loss_functions, loss_weights=None): self._optimizer = optimizer self._loss_functions = to_list(loss_functions) if loss_weights is not None: self._loss_weights = to_list(loss_weights) def parameters(self, *args, **kwargs): return self._adapter.parameters(*args, **kwargs)