# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import argparse import sys import os import logging import paddle.fluid as fluid from hapi.model import set_device, Input from hapi.vision.models import bmn, BmnLoss from bmn_metric import BmnMetric from reader import BmnDataset from config_utils import * DATATYPE = 'float32' logging.root.handlers = [] FORMAT = '[%(levelname)s: %(filename)s: %(lineno)4d]: %(message)s' logging.basicConfig(level=logging.INFO, format=FORMAT, stream=sys.stdout) logger = logging.getLogger(__name__) def parse_args(): parser = argparse.ArgumentParser("BMN inference.") parser.add_argument( "-d", "--dynamic", action='store_true', help="enable dygraph mode, only support dynamic mode at present time") parser.add_argument( '--config_file', type=str, default='bmn.yaml', help='path to config file of model') parser.add_argument( '--device', type=str, default='GPU', help='default use gpu.') parser.add_argument( '--weights', type=str, default=None, help='weight path, None to automatically download weights provided by Paddle.' ) parser.add_argument( '--filelist', type=str, default="infer.list", help='infer file list, default to use ./infer.list') parser.add_argument( '--output_path', type=str, default="output/INFER/BMN_results", help='output dir path, default to use output/INFER/BMN_results') parser.add_argument( '--result_path', type=str, default="predict_results/", help='output dir path after post processing, default to use ./predict_results/' ) parser.add_argument( '--log_interval', type=int, default=1, help='mini-batch interval to log.') args = parser.parse_args() return args # Prediction def infer_bmn(args): device = set_device(args.device) fluid.enable_dygraph(device) if args.dynamic else None #config setting config = parse_config(args.config_file) infer_cfg = merge_configs(config, 'infer', vars(args)) feat_dim = config.MODEL.feat_dim tscale = config.MODEL.tscale dscale = config.MODEL.dscale prop_boundary_ratio = config.MODEL.prop_boundary_ratio num_sample = config.MODEL.num_sample num_sample_perbin = config.MODEL.num_sample_perbin #input and video index inputs = [ Input( [None, config.MODEL.feat_dim, config.MODEL.tscale], 'float32', name='feat_input') ] labels = [Input([None, 1], 'int64', name='video_idx')] #data infer_dataset = BmnDataset(infer_cfg, 'infer') #model model = bmn(tscale, dscale, prop_boundary_ratio, num_sample, num_sample_perbin, pretrained=args.weights is None) model.prepare( metrics=BmnMetric( config, mode='infer'), inputs=inputs, labels=labels, device=device) # load checkpoint if args.weights is not None: assert os.path.exists( args.weights + ".pdparams"), "Given weight dir {} not exist.".format(args.weights) logger.info('load test weights from {}'.format(args.weights)) model.load(args.weights) # here use model.eval instead of model.test, as post process is required in our case model.evaluate( eval_data=infer_dataset, batch_size=infer_cfg.TEST.batch_size, num_workers=infer_cfg.TEST.num_workers, log_freq=args.log_interval) logger.info("[INFER] infer finished") if __name__ == '__main__': args = parse_args() infer_bmn(args)