# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ gru class """ import numpy as np from paddle.fluid.dygraph import Layer, Embedding, Linear import paddle.fluid as fluid from paddle.incubate.hapi.model import Model from paddle.incubate.hapi.text.text import BasicLSTMCell, RNN class LSTMEncoder(Layer): def __init__(self, dict_size, emb_dim, lstm_dim, hidden_dim, padding_idx): super(LSTMEncoder, self).__init__() self.dict_size = dict_size self.emb_dim = emb_dim self.lstm_dim = lstm_dim self.hidden_dim = hidden_dim self.is_reverse = False self.padding_idx = padding_idx self.emb_layer = Embedding( size=[self.dict_size, self.emb_dim], is_sparse=True, padding_idx=self.padding_idx, param_attr=fluid.ParamAttr( name='emb', initializer=fluid.initializer.Xavier())) self.lstm_cell = BasicLSTMCell( input_size=self.lstm_dim * 4, hidden_size=self.lstm_dim) self.lstm_layer = RNN(cell=self.lstm_cell, time_major=True, is_reverse=self.is_reverse) self.proj_layer = Linear( input_dim=self.emb_dim, output_dim=self.lstm_dim * 4) def forward(self, input): emb = self.emb_layer(input) emb_proj = self.proj_layer(emb) emb_lstm, _ = self.lstm_layer(emb_proj) emb_reduce = fluid.layers.reduce_max(emb_lstm, dim=1) emb_out = fluid.layers.tanh(emb_reduce) return emb_out class Pair_LSTMModel(Model): def __init__(self, conf_dict): super(Pair_LSTMModel, self).__init__() self.dict_size = conf_dict["dict_size"] self.emb_dim = conf_dict["net"]["emb_dim"] self.lstm_dim = conf_dict["net"]["lstm_dim"] self.hidden_dim = conf_dict["net"]["hidden_dim"] self.padding_idx = None self.emb_layer = LSTMEncoder(self.dict_size, self.emb_dim, self.lstm_dim, self.hidden_dim, self.padding_idx) self.fc_layer = Linear( input_dim=self.hidden_dim, output_dim=self.hidden_dim) self.fc_layer_po = Linear( input_dim=self.hidden_dim * 2, output_dim=self.hidden_dim) self.softmax_layer = Linear( input_dim=self.hidden_dim, output_dim=2, act='softmax') def forward(self, left, pos_right, neg_right): left_emb = self.emb_layer(left) pos_right_emb = self.emb_layer(pos_right) neg_right_emb = self.emb_layer(neg_right) left_fc = self.fc_layer(left_emb) pos_right_fc = self.fc_layer(pos_right_emb) neg_right_fc = self.fc_layer(neg_right_emb) pos_pred = fluid.layers.cos_sim(left_fc, pos_right_fc) neg_pred = fluid.layers.cos_sim(left_fc, neg_right_fc) return pos_pred, neg_pred class Point_LSTMModel(Model): def __init__(self, conf_dict): super(Point_LSTMModel, self).__init__() self.dict_size = conf_dict["dict_size"] self.task_mode = conf_dict["task_mode"] self.emb_dim = conf_dict["net"]["emb_dim"] self.lstm_dim = conf_dict["net"]["lstm_dim"] self.hidden_dim = conf_dict["net"]["hidden_dim"] self.padding_idx = None self.emb_layer = LSTMEncoder(self.dict_size, self.emb_dim, self.lstm_dim, self.hidden_dim, self.padding_idx) self.fc_layer = Linear( input_dim=self.hidden_dim, output_dim=self.hidden_dim) self.fc_layer_po = Linear( input_dim=self.hidden_dim * 2, output_dim=self.hidden_dim) self.softmax_layer = Linear( input_dim=self.hidden_dim, output_dim=2, act='softmax') def forward(self, left, right): left_emb = self.emb_layer(left) right_emb = self.emb_layer(right) concat = fluid.layers.concat([left_emb, right_emb], axis=1) concat_fc = self.fc_layer_po(concat) pred = self.softmax_layer(concat_fc) return pred