# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division from __future__ import print_function import os import argparse import numpy as np from PIL import Image import paddle from paddle import fluid from paddle.fluid.optimizer import Momentum from paddle.io import DataLoader from modeling import yolov3_darknet53, YoloLoss from transforms import * from utils import print_arguments from visualizer import draw_bbox import logging logger = logging.getLogger(__name__) IMAGE_MEAN = [0.485, 0.456, 0.406] IMAGE_STD = [0.229, 0.224, 0.225] NUM_MAX_BOXES = 50 def get_save_image_name(output_dir, image_path): """ Get save image name from source image path. """ if not os.path.exists(output_dir): os.makedirs(output_dir) image_name = os.path.split(image_path)[-1] name, ext = os.path.splitext(image_name) return os.path.join(output_dir, "{}".format(name)) + ext def load_labels(label_list, with_background=True): idx = int(with_background) cat2name = {} with open(label_list) as f: for line in f.readlines(): line = line.strip() if line: cat2name[idx] = line idx += 1 return cat2name def main(): device = paddle.set_device(FLAGS.device) paddle.disable_static(device) if FLAGS.dynamic else None cat2name = load_labels(FLAGS.label_list, with_background=False) model = yolov3_darknet53( num_classes=len(cat2name), num_max_boxes=NUM_MAX_BOXES, model_mode='test', pretrained=FLAGS.weights is None) model.prepare() if FLAGS.weights is not None: model.load(FLAGS.weights, reset_optimizer=True) # image preprocess orig_img = Image.open(FLAGS.infer_image).convert('RGB') w, h = orig_img.size img = orig_img.resize((608, 608), Image.BICUBIC) img = np.array(img).astype('float32') / 255.0 img -= np.array(IMAGE_MEAN) img /= np.array(IMAGE_STD) img = img.transpose((2, 0, 1))[np.newaxis, :] img_id = np.array([0]).astype('int64')[np.newaxis, :] img_shape = np.array([h, w]).astype('int32')[np.newaxis, :] _, bboxes = model.test_batch([img_id, img_shape, img]) vis_img = draw_bbox(orig_img, cat2name, bboxes, FLAGS.draw_threshold) save_name = get_save_image_name(FLAGS.output_dir, FLAGS.infer_image) logger.info("Detection bbox results save in {}".format(save_name)) vis_img.save(save_name, quality=95) if __name__ == '__main__': parser = argparse.ArgumentParser("Yolov3 Training on VOC") parser.add_argument( "--device", type=str, default='gpu', help="device to use, gpu or cpu") parser.add_argument( "-d", "--dynamic", action='store_true', help="enable dygraph mode") parser.add_argument( "--label_list", type=str, default=None, help="path to category label list file") parser.add_argument( "-t", "--draw_threshold", type=float, default=0.5, help="threshold to reserve the result for visualization") parser.add_argument( "-i", "--infer_image", type=str, default=None, help="image path for inference") parser.add_argument( "-o", "--output_dir", type=str, default='output', help="directory to save inference result if --visualize is set") parser.add_argument( "-w", "--weights", default=None, type=str, help="path to weights for inference") FLAGS = parser.parse_args() print_arguments(FLAGS) assert os.path.isfile(FLAGS.infer_image), \ "infer_image {} not a file".format(FLAGS.infer_image) assert os.path.isfile(FLAGS.label_list), \ "label_list {} not a file".format(FLAGS.label_list) main()