# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import json from pycocotools.cocoeval import COCOeval from pycocotools.coco import COCO from metrics import Metric import logging FORMAT = '%(asctime)s-%(levelname)s: %(message)s' logging.basicConfig(level=logging.INFO, format=FORMAT) logger = logging.getLogger(__name__) __all__ = ['COCOMetric'] OUTFILE = './bbox.json' # considered to change to a callback later class COCOMetric(Metric): """ Metrci for MS-COCO dataset, only support update with batch size as 1. Args: anno_path(str): path to COCO annotation json file with_background(bool): whether load category id with background as 0, default True """ def __init__(self, anno_path, with_background=True, **kwargs): super(COCOMetric, self).__init__(**kwargs) self.anno_path = anno_path self.with_background = with_background self.bbox_results = [] self.coco_gt = COCO(anno_path) cat_ids = self.coco_gt.getCatIds() self.clsid2catid = dict( {i + int(with_background): catid for i, catid in enumerate(cat_ids)}) def update(self, preds, *args, **kwargs): im_ids, bboxes = preds assert im_ids.shape[0] == 1, \ "COCOMetric can only update with batch size = 1" if bboxes.shape[1] != 6: # no bbox detected in this batch return im_id = int(im_ids) for i in range(bboxes.shape[0]): dt = bboxes[i, :] clsid, score, xmin, ymin, xmax, ymax = dt.tolist() catid = (self.clsid2catid[int(clsid)]) w = xmax - xmin + 1 h = ymax - ymin + 1 bbox = [xmin, ymin, w, h] coco_res = { 'image_id': im_id, 'category_id': catid, 'bbox': bbox, 'score': score } self.bbox_results.append(coco_res) def reset(self): self.bbox_results = [] def accumulate(self): if len(self.bbox_results) == 0: logger.warning("The number of valid bbox detected is zero.\n \ Please use reasonable model and check input data.\n \ stop COCOMetric accumulate!") return [0.0] with open(OUTFILE, 'w') as f: json.dump(self.bbox_results, f) map_stats = self.cocoapi_eval(OUTFILE, 'bbox', coco_gt=self.coco_gt) # flush coco evaluation result sys.stdout.flush() self.result = map_stats[0] return self.result def cocoapi_eval(self, jsonfile, style, coco_gt=None, anno_file=None): assert coco_gt != None or anno_file != None if coco_gt == None: coco_gt = COCO(anno_file) logger.info("Start evaluate...") coco_dt = coco_gt.loadRes(jsonfile) coco_eval = COCOeval(coco_gt, coco_dt, style) coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() return coco_eval.stats