# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division import math import sys import random import cv2 import numpy as np import numbers import types import collections import warnings from . import functional as F if sys.version_info < (3, 3): Iterable = collections.Iterable else: Iterable = collections.abc.Iterable __all__ = [ "Compose", "Resize", "RandomResizedCrop", "CenterCropResize", "CenterCrop", "RandomHorizontalFlip", "RandomVerticalFlip", "Permute", "Normalize", "GaussianNoise", "BrightnessTransform", "SaturationTransform", "ContrastTransform", "HueTransform", "ColorJitter", ] class Compose(object): """Composes several transforms together. Args: transforms (list of ``Transform`` objects): list of transforms to compose. """ def __init__(self, transforms): self.transforms = transforms def __call__(self, img): for t in self.transforms: img = t(img) return img def __repr__(self): format_string = self.__class__.__name__ + '(' for t in self.transforms: format_string += '\n' format_string += ' {0}'.format(t) format_string += '\n)' return format_string class Resize(object): """Resize the input PIL Image to the given size. Args: size (int|list|tuple): Desired output size. If size is a sequence like (h, w), output size will be matched to this. If size is an int, smaller edge of the image will be matched to this number. i.e, if height > width, then image will be rescaled to (size * height / width, size) interpolation (int): interpolation mode of resize. Default: cv2.INTER_LINEAR. """ def __init__(self, size, interpolation=cv2.INTER_LINEAR): assert isinstance(size, int) or (isinstance(size, Iterable) and len(size) == 2) self.size = size self.interpolation = interpolation def __call__(self, img): """ Args: img (PIL Image): Image to be scaled. Returns: PIL Image: Rescaled image. """ return F.resize(img, self.size, self.interpolation) class RandomResizedCrop(object): """Crop the input data to random size and aspect ratio. A crop of random size (default: of 0.08 to 1.0) of the original size and a random aspect ratio (default: of 3/4 to 1.33) of the original aspect ratio is made. After applying crop transfrom, the input data will be resized to given size. Args: output_size (int|list|tuple): Target size of output image, with (height, width) shape. scale (list|tuple): Range of size of the origin size cropped. Default: (0.08, 1.0) ratio (list|tuple): Range of aspect ratio of the origin aspect ratio cropped. Default: (0.75, 1.33) """ def __init__(self, output_size, scale=(0.08, 1.0), ratio=(3. / 4, 4. / 3), interpolation=cv2.INTER_LINEAR): if isinstance(output_size, int): self.output_size = (output_size, output_size) else: self.output_size = output_size assert (scale[0] <= scale[1]), "scale should be of kind (min, max)" assert (ratio[0] <= ratio[1]), "ratio should be of kind (min, max)" self.scale = scale self.ratio = ratio self.interpolation = interpolation def _get_params(self, image, attempts=10): height, width, _ = image.shape area = height * width for _ in range(attempts): target_area = np.random.uniform(*self.scale) * area log_ratio = tuple(math.log(x) for x in self.ratio) aspect_ratio = math.exp(np.random.uniform(*log_ratio)) w = int(round(math.sqrt(target_area * aspect_ratio))) h = int(round(math.sqrt(target_area / aspect_ratio))) if 0 < w <= width and 0 < h <= height: x = np.random.randint(0, width - w + 1) y = np.random.randint(0, height - h + 1) return x, y, w, h # Fallback to central crop in_ratio = float(width) / float(height) if in_ratio < min(self.ratio): w = width h = int(round(w / min(self.ratio))) elif in_ratio > max(self.ratio): h = height w = int(round(h * max(self.ratio))) else: # whole image w = width h = height x = (width - w) // 2 y = (height - h) // 2 return x, y, w, h def __call__(self, img): x, y, w, h = self._get_params(img) cropped_img = img[y:y + h, x:x + w] return F.resize(cropped_img, self.output_size, self.interpolation) class CenterCropResize(object): """Crops to center of image with padding then scales size. Args: size (int|list|tuple): Target size of output image, with (height, width) shape. crop_padding (int): center crop with the padding. Default: 32. interpolation (int): interpolation mode of resize. Default: cv2.INTER_LINEAR. """ def __init__(self, size, crop_padding=32, interpolation=cv2.INTER_LINEAR): if isinstance(size, int): self.size = (size, size) else: self.size = size self.crop_padding = crop_padding self.interpolation = interpolation def _get_params(self, img): h, w = img.shape[:2] size = min(self.size) c = int(size / (size + self.crop_padding) * min((h, w))) x = (h + 1 - c) // 2 y = (w + 1 - c) // 2 return c, x, y def __call__(self, img): c, x, y = self._get_params(img) cropped_img = img[x:x + c, y:y + c, :] return F.resize(cropped_img, self.size, self.interpolation) class CenterCrop(object): """Crops the given the input data at the center. Args: output_size: Target size of output image, with (height, width) shape. """ def __init__(self, output_size): if isinstance(output_size, int): self.output_size = (output_size, output_size) else: self.output_size = output_size def _get_params(self, img): th, tw = self.output_size h, w, _ = img.shape assert th <= h and tw <= w, "output size is bigger than image size" x = int(round((w - tw) / 2.0)) y = int(round((h - th) / 2.0)) return x, y def __call__(self, img): x, y = self._get_params(img) th, tw = self.output_size return img[y:y + th, x:x + tw] class RandomHorizontalFlip(object): """Horizontally flip the input data randomly with a given probability. Args: prob (float): probability of the input data being flipped. Default: 0.5 """ def __init__(self, prob=0.5): self.prob = prob def __call__(self, img): if np.random.random() < self.prob: return F.flip(img, code=1) return img class RandomVerticalFlip(object): """Vertically flip the input data randomly with a given probability. Args: prob (float): probability of the input data being flipped. Default: 0.5 """ def __init__(self, prob=0.5): self.prob = prob def __call__(self, img): if np.random.random() < self.prob: return F.flip(img, code=0) return img class Normalize(object): """Normalize the input data with mean and standard deviation. Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels, this transform will normalize each channel of the input data. ``output[channel] = (input[channel] - mean[channel]) / std[channel]`` Args: mean (int|float|list): Sequence of means for each channel. std (int|float|list): Sequence of standard deviations for each channel. """ def __init__(self, mean=0.0, std=1.0): if isinstance(mean, numbers.Number): mean = [mean, mean, mean] if isinstance(std, numbers.Number): mean = [std, std, std] self.mean = np.array(mean, dtype=np.float32).reshape(len(mean), 1, 1) self.std = np.array(std, dtype=np.float32).reshape(len(std), 1, 1) def __call__(self, img): return (img - self.mean) / self.std class Permute(object): """Change input data to a target mode. For example, most transforms use HWC mode image, while the Neural Network might use CHW mode input tensor. Input image should be HWC mode and an instance of numpy.ndarray. Args: mode: Output mode of input. Use "CHW" mode by default. """ def __init__(self, mode="CHW"): assert mode in ["CHW"], "unsupported mode: {}".format(mode) self.mode = mode def __call__(self, img): if self.mode == "CHW": return img.transpose((2, 0, 1))[::-1, ...] return img class GaussianNoise(object): """Add random gaussian noise to the input data. Gaussian noise is generated with given mean and std. Args: mean: Gaussian mean used to generate noise. std: Gaussian standard deviation used to generate noise. """ def __init__(self, mean=0.0, std=1.0): self.mean = np.array(mean, dtype=np.float32) self.std = np.array(std, dtype=np.float32) def __call__(self, img): dtype = img.dtype noise = np.random.normal(self.mean, self.std, img.shape) * 255 img = img + noise.astype(np.float32) return np.clip(img, 0, 255).astype(dtype) class BrightnessTransform(object): """Adjust brightness of the image. Args: value: How much to adjust the brightness. Can be any non negative number. 0 gives the original image """ def __init__(self, value): if value < 0: raise ValueError("brightness value should be non-negative") self.value = value def __call__(self, img): if self.value == 0: return img dtype = img.dtype img = img.astype(np.float32) alpha = np.random.uniform(max(0, 1 - self.value), 1 + self.value) img = img * alpha return img.clip(0, 255).astype(dtype) class ContrastTransform(object): """Adjust contrast of the image. Args: value: How much to adjust the contrast. Can be any non negative number. 0 gives the original image """ def __init__(self, value): if value < 0: raise ValueError("contrast value should be non-negative") self.value = value def __call__(self, img): if self.value == 0: return img dtype = img.dtype img = img.astype(np.float32) alpha = np.random.uniform(max(0, 1 - self.value), 1 + self.value) img = img * alpha + cv2.cvtColor(img, cv2.COLOR_BGR2GRAY).mean() * ( 1 - alpha) return img.clip(0, 255).astype(dtype) class SaturationTransform(object): """Adjust saturation of the image. Args: value: How much to adjust the saturation. Can be any non negative number. 0 gives the original image """ def __init__(self, value): if value < 0: raise ValueError("saturation value should be non-negative") self.value = value def __call__(self, img): if self.value == 0: return img dtype = img.dtype img = img.astype(np.float32) alpha = np.random.uniform(max(0, 1 - self.value), 1 + self.value) gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) gray_img = gray_img[..., np.newaxis] img = img * alpha + gray_img * (1 - alpha) return img.clip(0, 255).astype(dtype) class HueTransform(object): """Adjust hue of the image. Args: value: How much to adjust the hue. Can be any number between 0 and 0.5, 0 gives the original image """ def __init__(self, value): if value < 0 or value > 0.5: raise ValueError("hue value should be in [0.0, 0.5]") self.value = value def __call__(self, img): if self.value == 0: return img dtype = img.dtype img = img.astype(np.uint8) hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV_FULL) h, s, v = cv2.split(hsv_img) alpha = np.random.uniform(-self.value, self.value) h = h.astype(np.uint8) # uint8 addition take cares of rotation across boundaries with np.errstate(over="ignore"): h += np.uint8(alpha * 255) hsv_img = cv2.merge([h, s, v]) return cv2.cvtColor(hsv_img, cv2.COLOR_HSV2BGR_FULL).astype(dtype) class ColorJitter(object): """Randomly change the brightness, contrast, saturation and hue of an image. Args: brightness: How much to jitter brightness. Chosen uniformly from [max(0, 1 - brightness), 1 + brightness] or the given [min, max]. Should be non negative numbers. contrast: How much to jitter contrast. Chosen uniformly from [max(0, 1 - contrast), 1 + contrast] or the given [min, max]. Should be non negative numbers. saturation: How much to jitter saturation. Chosen uniformly from [max(0, 1 - saturation), 1 + saturation] or the given [min, max]. Should be non negative numbers. hue: How much to jitter hue. Chosen uniformly from [-hue, hue] or the given [min, max]. Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5. """ def __init__(self, brightness=0, contrast=0, saturation=0, hue=0): transforms = [] if brightness != 0: transforms.append(BrightnessTransform(brightness)) if contrast != 0: transforms.append(ContrastTransform(contrast)) if saturation != 0: transforms.append(SaturationTransform(saturation)) if hue != 0: transforms.append(HueTransform(hue)) random.shuffle(transforms) self.transforms = Compose(transforms) def __call__(self, img): return self.transforms(img)