# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """BERT fine-tuning in Paddle Dygraph Mode.""" import paddle.fluid as fluid from hapi.metrics import Accuracy from hapi.configure import Config from hapi.text.bert import BertEncoder from paddle.fluid.dygraph import Linear, Layer from hapi.loss import SoftmaxWithCrossEntropy from hapi.model import set_device, Model, Input import hapi.text.tokenizer.tokenization as tokenization from hapi.text.bert import BertConfig, BertDataLoader, BertInputExample, make_optimizer class ClsModelLayer(Model): """ classify model """ def __init__(self, args, config, num_labels, return_pooled_out=True, use_fp16=False): super(ClsModelLayer, self).__init__() self.config = config self.use_fp16 = use_fp16 self.loss_scaling = args.loss_scaling self.bert_layer = BertEncoder( config=self.config, return_pooled_out=True, use_fp16=self.use_fp16) self.cls_fc = Linear( input_dim=self.config["hidden_size"], output_dim=num_labels, param_attr=fluid.ParamAttr( name="cls_out_w", initializer=fluid.initializer.TruncatedNormal(scale=0.02)), bias_attr=fluid.ParamAttr( name="cls_out_b", initializer=fluid.initializer.Constant(0.))) def forward(self, src_ids, position_ids, sentence_ids, input_mask): """ forward """ enc_output, next_sent_feat = self.bert_layer(src_ids, position_ids, sentence_ids, input_mask) cls_feats = fluid.layers.dropout( x=next_sent_feat, dropout_prob=0.1, dropout_implementation="upscale_in_train") pred = self.cls_fc(cls_feats) return pred def main(): config = Config(yaml_file="./bert.yaml") config.build() config.Print() device = set_device("gpu" if config.use_cuda else "cpu") fluid.enable_dygraph(device) bert_config = BertConfig(config.bert_config_path) bert_config.print_config() tokenizer = tokenization.FullTokenizer( vocab_file=config.vocab_path, do_lower_case=config.do_lower_case) def mnli_line_processor(line_id, line): if line_id == "0": return None uid = tokenization.convert_to_unicode(line[0]) text_a = tokenization.convert_to_unicode(line[8]) text_b = tokenization.convert_to_unicode(line[9]) label = tokenization.convert_to_unicode(line[-1]) if label not in ["contradiction", "entailment", "neutral"]: label = "contradiction" return BertInputExample( uid=uid, text_a=text_a, text_b=text_b, label=label) train_dataloader = BertDataLoader( "./data/glue_data/MNLI/train.tsv", tokenizer, ["contradiction", "entailment", "neutral"], max_seq_length=config.max_seq_len, batch_size=config.batch_size, line_processor=mnli_line_processor, mode="leveldb", ) test_dataloader = BertDataLoader( "./data/glue_data/MNLI/dev_matched.tsv", tokenizer, ["contradiction", "entailment", "neutral"], max_seq_length=config.max_seq_len, batch_size=config.batch_size, line_processor=mnli_line_processor, shuffle=False, phase="predict") trainer_count = fluid.dygraph.parallel.Env().nranks num_train_examples = len(train_dataloader.dataset) max_train_steps = config.epoch * num_train_examples // config.batch_size // trainer_count warmup_steps = int(max_train_steps * config.warmup_proportion) print("Trainer count: %d" % trainer_count) print("Num train examples: %d" % num_train_examples) print("Max train steps: %d" % max_train_steps) print("Num warmup steps: %d" % warmup_steps) inputs = [ Input( [None, None], 'int64', name='src_ids'), Input( [None, None], 'int64', name='pos_ids'), Input( [None, None], 'int64', name='sent_ids'), Input( [None, None, 1], 'float32', name='input_mask') ] labels = [Input([None, 1], 'int64', name='label')] cls_model = ClsModelLayer( config, bert_config, len(["contradiction", "entailment", "neutral"]), return_pooled_out=True) optimizer = make_optimizer( warmup_steps=warmup_steps, num_train_steps=max_train_steps, learning_rate=config.learning_rate, weight_decay=config.weight_decay, scheduler=config.lr_scheduler, model=cls_model, loss_scaling=config.loss_scaling, parameter_list=cls_model.parameters()) cls_model.prepare( optimizer, SoftmaxWithCrossEntropy(), Accuracy(topk=(1, 2)), inputs, labels, device=device) cls_model.bert_layer.load("./bert_small", reset_optimizer=True) # do train cls_model.fit(train_data=train_dataloader.dataloader, epochs=config.epoch, save_dir=config.checkpoints) # do eval cls_model.evaluate( eval_data=test_dataloader.dataloader, batch_size=config.batch_size) if __name__ == '__main__': main()