# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import cv2 import math import random import numpy as np from paddle.vision.datasets import DatasetFolder from paddle.vision.transforms import transforms class ImageNetDataset(DatasetFolder): def __init__(self, path, mode='train', image_size=224, resize_short_size=256): super(ImageNetDataset, self).__init__(path) self.mode = mode normalize = transforms.Normalize( mean=[123.675, 116.28, 103.53], std=[58.395, 57.120, 57.375]) if self.mode == 'train': self.transform = transforms.Compose([ transforms.RandomResizedCrop(image_size), transforms.RandomHorizontalFlip(), transforms.Permute(mode='CHW'), normalize ]) else: self.transform = transforms.Compose([ transforms.Resize(resize_short_size), transforms.CenterCrop(image_size), transforms.Permute(mode='CHW'), normalize ]) def __getitem__(self, idx): img_path, label = self.samples[idx] img = cv2.imread(img_path).astype(np.float32) label = np.array([label]).astype(np.int64) return self.transform(img), label def __len__(self): return len(self.samples)