# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import time import random from callbacks import config_callbacks class TestCallbacks(unittest.TestCase): def test_callback(self): epochs = 2 steps = 50 freq = 1 eval_steps = 20 cbks = config_callbacks( batch_size=128, epochs=epochs, steps=steps, verbose=2, metrics=['loss', 'acc'], ) cbks.on_begin('train') logs = {'loss': 50.341673, 'acc': 0.00256} for epoch in range(epochs): cbks.on_epoch_begin(epoch) for step in range(steps): cbks.on_batch_begin('train', step, logs) logs['loss'] -= random.random() * 0.1 logs['acc'] += random.random() * 0.1 time.sleep(0.005) cbks.on_batch_end('train', step, logs) cbks.on_epoch_end(epoch, logs) eval_logs = {'eval_loss': 20.341673, 'eval_acc': 0.256} params = { 'eval_steps': eval_steps, 'eval_metrics': ['eval_loss', 'eval_acc'], 'log_freq': 10, } cbks.on_begin('eval', params) for step in range(eval_steps): cbks.on_batch_begin('eval', step, logs) eval_logs['eval_loss'] -= random.random() * 0.1 eval_logs['eval_acc'] += random.random() * 0.1 eval_logs['batch_size'] = 2 time.sleep(0.005) cbks.on_batch_end('eval', step, eval_logs) cbks.on_end('eval', eval_logs) cbks.on_end('train') if __name__ == '__main__': unittest.main()