# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ bow class """ import paddle.fluid as fluid from paddle.fluid.dygraph import Linear, Layer, Embedding from paddle.incubate.hapi.model import Model #1. define BOWEncoder class BOWEncoder(Layer): """ simple BOWEncoder for simnet """ def __init__(self, dict_size, bow_dim, seq_len, emb_dim, padding_idx): super(BOWEncoder, self).__init__() self.dict_size = dict_size self.bow_dim = bow_dim self.seq_len = seq_len self.emb_dim = emb_dim self.padding_idx = padding_idx self.emb_layer = Embedding( size=[self.dict_size, self.emb_dim], is_sparse=True, padding_idx=self.padding_idx, param_attr=fluid.ParamAttr( name='emb', initializer=fluid.initializer.Xavier())) def forward(self, input): emb = self.emb_layer(input) emb_reshape = fluid.layers.reshape( emb, shape=[-1, self.seq_len, self.bow_dim]) bow_emb = fluid.layers.reduce_sum(emb_reshape, dim=1) return bow_emb class Pair_BOWModel(Model): """ classify model """ def __init__(self, conf_dict): super(Pair_BOWModel, self).__init__() self.dict_size = conf_dict["dict_size"] self.task_mode = conf_dict["task_mode"] self.emb_dim = conf_dict["net"]["emb_dim"] self.bow_dim = conf_dict["net"]["bow_dim"] self.seq_len = conf_dict["seq_len"] self.padding_idx = None self.emb_layer = BOWEncoder(self.dict_size, self.bow_dim, self.seq_len, self.emb_dim, self.padding_idx) self.bow_layer = Linear( input_dim=self.bow_dim, output_dim=self.bow_dim) def forward(self, left, pos_right, neg_right): bow_left = self.emb_layer(left) pos_bow_right = self.emb_layer(pos_right) neg_bow_right = self.emb_layer(neg_right) left_soft = fluid.layers.softsign(bow_left) pos_right_soft = fluid.layers.softsign(pos_bow_right) neg_right_soft = fluid.layers.softsign(neg_bow_right) left_bow = self.bow_layer(left_soft) pos_right_bow = self.bow_layer(pos_right_soft) neg_right_bow = self.bow_layer(neg_right_soft) pos_pred = fluid.layers.cos_sim(left_bow, pos_right_bow) neg_pred = fluid.layers.cos_sim(left_bow, neg_right_bow) return pos_pred, neg_pred class Point_BOWModel(Model): """ classify model """ def __init__(self, conf_dict): super(Point_BOWModel, self).__init__() self.dict_size = conf_dict["dict_size"] self.task_mode = conf_dict["task_mode"] self.emb_dim = conf_dict["net"]["emb_dim"] self.bow_dim = conf_dict["net"]["bow_dim"] self.seq_len = conf_dict["seq_len"] self.padding_idx = None self.emb_layer = BOWEncoder(self.dict_size, self.bow_dim, self.seq_len, self.emb_dim, self.padding_idx) self.bow_layer_po = Linear( input_dim=self.bow_dim * 2, output_dim=self.bow_dim) self.softmax_layer = Linear( input_dim=self.bow_dim, output_dim=2, act='softmax') def forward(self, left, right): bow_left = self.emb_layer(left) bow_right = self.emb_layer(right) left_soft = fluid.layers.softsign(bow_left) right_soft = fluid.layers.softsign(bow_right) concat = fluid.layers.concat([left_soft, right_soft], axis=1) concat_fc = self.bow_layer_po(concat) pred = self.softmax_layer(concat_fc) return pred