# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.fluid as fluid from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear from paddle.fluid.dygraph.container import Sequential from model import Model from .download import get_weights_path __all__ = [ 'VGG', 'vgg11', 'vgg11_bn', 'vgg13', 'vgg13_bn', 'vgg16', 'vgg16_bn', 'vgg19_bn', 'vgg19', ] model_urls = {} class Classifier(fluid.dygraph.Layer): def __init__(self, num_classes): super(Classifier, self).__init__() self.linear1 = Linear(512 * 7 * 7, 4096) self.linear2 = Linear(4096, 4096) self.linear3 = Linear(4096, num_classes, act='softmax') def forward(self, x): x = self.linear1(x) x = fluid.layers.relu(x) x = fluid.layers.dropout(x, 0.5) x = self.linear2(x) x = fluid.layers.relu(x) x = fluid.layers.dropout(x, 0.5) out = self.linear3(x) return out class VGG(Model): """VGG model from `"Very Deep Convolutional Networks For Large-Scale Image Recognition" `_ Args: features (fluid.dygraph.Layer): vgg features create by function make_layers. num_classes (int): output dim of last fc layer. Default: 1000. """ def __init__(self, features, num_classes=1000): super(VGG, self).__init__() self.features = features classifier = Classifier(num_classes) self.classifier = self.add_sublayer("classifier", Sequential(classifier)) def forward(self, x): x = self.features(x) x = fluid.layers.flatten(x, 1) x = self.classifier(x) return x def make_layers(cfg, batch_norm=False): layers = [] in_channels = 3 for v in cfg: if v == 'M': layers += [Pool2D(pool_size=2, pool_stride=2)] else: if batch_norm: conv2d = Conv2D(in_channels, v, filter_size=3, padding=1) layers += [conv2d, BatchNorm(v, act='relu')] else: conv2d = Conv2D( in_channels, v, filter_size=3, padding=1, act='relu') layers += [conv2d] in_channels = v return Sequential(*layers) cfgs = { 'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'D': [ 64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M' ], 'E': [ 64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M' ], } def _vgg(arch, cfg, batch_norm, pretrained, **kwargs): model = VGG(make_layers(cfgs[cfg], batch_norm=batch_norm), **kwargs) if pretrained: assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format( arch) weight_path = get_weights_path(model_urls[arch][0], model_urls[arch][1]) assert weight_path.endswith( '.pdparams'), "suffix of weight must be .pdparams" model.load(weight_path[:-9]) return model def vgg11(pretrained=False, **kwargs): """VGG 11-layer model from Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ return _vgg('vgg11', 'A', False, pretrained, **kwargs) def vgg11_bn(pretrained=False, **kwargs): """VGG 11-layer model with batch normalization Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ return _vgg('vgg11_bn', 'A', True, pretrained, **kwargs) def vgg13(pretrained=False, **kwargs): """VGG 13-layer model Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ return _vgg('vgg13', 'B', False, pretrained, **kwargs) def vgg13_bn(pretrained=False, **kwargs): """VGG 13-layer model with batch normalization Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ return _vgg('vgg13_bn', 'B', True, pretrained, **kwargs) def vgg16(pretrained=False, **kwargs): """VGG 16-layer model Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ return _vgg('vgg16', 'D', False, pretrained, **kwargs) def vgg16_bn(pretrained=False, **kwargs): """VGG 16-layer with batch normalization Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ return _vgg('vgg16_bn', 'D', True, pretrained, **kwargs) def vgg19(pretrained=False, **kwargs): """VGG 19-layer model Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ return _vgg('vgg19', 'E', False, pretrained, **kwargs) def vgg19_bn(pretrained=False, **kwargs): """VGG 19-layer model with batch normalization Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ return _vgg('vgg19_bn', 'E', True, pretrained, **kwargs)