# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle.fluid as fluid import paddle.fluid.layers as layers from paddle.fluid import ParamAttr from paddle.fluid.initializer import UniformInitializer from paddle.fluid.dygraph import Embedding, Linear, Layer from paddle.fluid.layers import BeamSearchDecoder from paddle.incubate.hapi.model import Model, Loss from paddle.incubate.hapi.text import DynamicDecode, RNN, BasicLSTMCell, RNNCell class CrossEntropyCriterion(Loss): def __init__(self): super(CrossEntropyCriterion, self).__init__() def forward(self, outputs, labels): predict, (trg_length, label) = outputs[0], labels # for target padding mask mask = layers.sequence_mask( trg_length, maxlen=layers.shape(predict)[1], dtype=predict.dtype) cost = layers.softmax_with_cross_entropy( logits=predict, label=label, soft_label=False) masked_cost = layers.elementwise_mul(cost, mask, axis=0) batch_mean_cost = layers.reduce_mean(masked_cost, dim=[0]) seq_cost = layers.reduce_sum(batch_mean_cost) return seq_cost class EncoderCell(RNNCell): def __init__(self, num_layers, input_size, hidden_size, dropout_prob=0., init_scale=0.1): super(EncoderCell, self).__init__() self.dropout_prob = dropout_prob # use add_sublayer to add multi-layers self.lstm_cells = [] for i in range(num_layers): self.lstm_cells.append( self.add_sublayer( "lstm_%d" % i, BasicLSTMCell( input_size=input_size if i == 0 else hidden_size, hidden_size=hidden_size, param_attr=ParamAttr(initializer=UniformInitializer( low=-init_scale, high=init_scale))))) def forward(self, step_input, states): new_states = [] for i, lstm_cell in enumerate(self.lstm_cells): out, new_state = lstm_cell(step_input, states[i]) step_input = layers.dropout( out, self.dropout_prob, dropout_implementation='upscale_in_train' ) if self.dropout_prob > 0 else out new_states.append(new_state) return step_input, new_states @property def state_shape(self): return [cell.state_shape for cell in self.lstm_cells] class Encoder(Layer): def __init__(self, vocab_size, embed_dim, hidden_size, num_layers, dropout_prob=0., init_scale=0.1): super(Encoder, self).__init__() self.embedder = Embedding( size=[vocab_size, embed_dim], param_attr=ParamAttr(initializer=UniformInitializer( low=-init_scale, high=init_scale))) self.stack_lstm = RNN(EncoderCell(num_layers, embed_dim, hidden_size, dropout_prob, init_scale), is_reverse=False, time_major=False) def forward(self, sequence, sequence_length): inputs = self.embedder(sequence) encoder_output, encoder_state = self.stack_lstm( inputs, sequence_length=sequence_length) return encoder_output, encoder_state DecoderCell = EncoderCell class Decoder(Layer): def __init__(self, vocab_size, embed_dim, hidden_size, num_layers, dropout_prob=0., init_scale=0.1): super(Decoder, self).__init__() self.embedder = Embedding( size=[vocab_size, embed_dim], param_attr=ParamAttr(initializer=UniformInitializer( low=-init_scale, high=init_scale))) self.stack_lstm = RNN(DecoderCell(num_layers, embed_dim, hidden_size, dropout_prob, init_scale), is_reverse=False, time_major=False) self.output_layer = Linear( hidden_size, vocab_size, param_attr=ParamAttr(initializer=UniformInitializer( low=-init_scale, high=init_scale)), bias_attr=False) def forward(self, target, decoder_initial_states): inputs = self.embedder(target) decoder_output, _ = self.stack_lstm( inputs, initial_states=decoder_initial_states) predict = self.output_layer(decoder_output) return predict class BaseModel(Model): def __init__(self, src_vocab_size, trg_vocab_size, embed_dim, hidden_size, num_layers, dropout_prob=0., init_scale=0.1): super(BaseModel, self).__init__() self.hidden_size = hidden_size self.encoder = Encoder(src_vocab_size, embed_dim, hidden_size, num_layers, dropout_prob, init_scale) self.decoder = Decoder(trg_vocab_size, embed_dim, hidden_size, num_layers, dropout_prob, init_scale) def forward(self, src, src_length, trg): # encoder encoder_output, encoder_final_states = self.encoder(src, src_length) # decoder predict = self.decoder(trg, encoder_final_states) return predict class BaseInferModel(BaseModel): def __init__(self, src_vocab_size, trg_vocab_size, embed_dim, hidden_size, num_layers, dropout_prob=0., bos_id=0, eos_id=1, beam_size=4, max_out_len=256): args = dict(locals()) args.pop("self") args.pop("__class__", None) # py3 self.bos_id = args.pop("bos_id") self.eos_id = args.pop("eos_id") self.beam_size = args.pop("beam_size") self.max_out_len = args.pop("max_out_len") super(BaseInferModel, self).__init__(**args) # dynamic decoder for inference decoder = BeamSearchDecoder( self.decoder.stack_lstm.cell, start_token=bos_id, end_token=eos_id, beam_size=beam_size, embedding_fn=self.decoder.embedder, output_fn=self.decoder.output_layer) self.beam_search_decoder = DynamicDecode( decoder, max_step_num=max_out_len, is_test=True) def forward(self, src, src_length): # encoding encoder_output, encoder_final_states = self.encoder(src, src_length) # dynamic decoding with beam search rs, _ = self.beam_search_decoder(inits=encoder_final_states) return rs