# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import os import sys import random import numpy as np import argparse import functools from PIL import Image import paddle.fluid.profiler as profiler import paddle.fluid as fluid from hapi.model import Input, set_device from hapi.datasets.folder import ImageFolder from hapi.vision.transforms import BatchCompose from utility import add_arguments, print_arguments from utility import postprocess, index2word from seq2seq_attn import Seq2SeqAttInferModel, WeightCrossEntropy import data parser = argparse.ArgumentParser(description=__doc__) add_arg = functools.partial(add_arguments, argparser=parser) # yapf: disable add_arg('batch_size', int, 1, "Minibatch size.") add_arg('image_path', str, None, "The directory of images to be used for test.") add_arg('init_model', str, None, "The init model file of directory.") add_arg('use_gpu', bool, True, "Whether use GPU to train.") # model hyper paramters add_arg('encoder_size', int, 200, "Encoder size.") add_arg('decoder_size', int, 128, "Decoder size.") add_arg('embedding_dim', int, 128, "Word vector dim.") add_arg('num_classes', int, 95, "Number classes.") add_arg('beam_size', int, 3, "Beam size for beam search.") add_arg('dynamic', bool, False, "Whether to use dygraph.") # yapf: enable def main(FLAGS): device = set_device("gpu" if FLAGS.use_gpu else "cpu") fluid.enable_dygraph(device) if FLAGS.dynamic else None model = Seq2SeqAttInferModel( encoder_size=FLAGS.encoder_size, decoder_size=FLAGS.decoder_size, emb_dim=FLAGS.embedding_dim, num_classes=FLAGS.num_classes, beam_size=FLAGS.beam_size) inputs = [Input([None, 1, 48, 384], "float32", name="pixel"), ] model.prepare(inputs=inputs, device=device) model.load(FLAGS.init_model) fn = lambda p: Image.open(p).convert('L') test_dataset = ImageFolder(FLAGS.image_path, loader=fn) test_collate_fn = BatchCompose([data.Resize(), data.Normalize()]) test_loader = fluid.io.DataLoader( test_dataset, places=device, num_workers=0, return_list=True, collate_fn=test_collate_fn) samples = test_dataset.samples #outputs = model.predict(test_loader) ins_id = 0 for image, in test_loader: image = image if FLAGS.dynamic else image[0] pred = model.test_batch([image])[0] pred = pred[:, :, np.newaxis] if len(pred.shape) == 2 else pred pred = np.transpose(pred, [0, 2, 1]) for ins in pred: impath = samples[ins_id] ins_id += 1 print('Image {}: {}'.format(ins_id, impath)) for beam_idx, beam in enumerate(ins): id_list = postprocess(beam) word_list = index2word(id_list) sequence = "".join(word_list) print('{}: {}'.format(beam_idx, sequence)) if __name__ == '__main__': FLAGS = parser.parse_args() print_arguments(FLAGS) main(FLAGS)