# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import six import sys import time import numpy as np import paddle import paddle.fluid as fluid from utils.configure import PDConfig from utils.check import check_gpu, check_version # include task-specific libs import reader from model import Transformer, position_encoding_init def post_process_seq(seq, bos_idx, eos_idx, output_bos=False, output_eos=False): """ Post-process the decoded sequence. """ eos_pos = len(seq) - 1 for i, idx in enumerate(seq): if idx == eos_idx: eos_pos = i break seq = [ idx for idx in seq[:eos_pos + 1] if (output_bos or idx != bos_idx) and (output_eos or idx != eos_idx) ] return seq def do_predict(args): if args.use_cuda: place = fluid.CUDAPlace(0) else: place = fluid.CPUPlace() # define the data generator processor = reader.DataProcessor(fpattern=args.predict_file, src_vocab_fpath=args.src_vocab_fpath, trg_vocab_fpath=args.trg_vocab_fpath, token_delimiter=args.token_delimiter, use_token_batch=False, batch_size=args.batch_size, device_count=1, pool_size=args.pool_size, sort_type=reader.SortType.NONE, shuffle=False, shuffle_batch=False, start_mark=args.special_token[0], end_mark=args.special_token[1], unk_mark=args.special_token[2], max_length=args.max_length, n_head=args.n_head) batch_generator = processor.data_generator(phase="predict", place=place) args.src_vocab_size, args.trg_vocab_size, args.bos_idx, args.eos_idx, \ args.unk_idx = processor.get_vocab_summary() trg_idx2word = reader.DataProcessor.load_dict( dict_path=args.trg_vocab_fpath, reverse=True) args.src_vocab_size, args.trg_vocab_size, args.bos_idx, args.eos_idx, \ args.unk_idx = processor.get_vocab_summary() with fluid.dygraph.guard(place): # define data loader test_loader = fluid.io.DataLoader.from_generator(capacity=10) test_loader.set_batch_generator(batch_generator, places=place) # define model transformer = Transformer( args.src_vocab_size, args.trg_vocab_size, args.max_length + 1, args.n_layer, args.n_head, args.d_key, args.d_value, args.d_model, args.d_inner_hid, args.prepostprocess_dropout, args.attention_dropout, args.relu_dropout, args.preprocess_cmd, args.postprocess_cmd, args.weight_sharing, args.bos_idx, args.eos_idx) # load the trained model assert args.init_from_params, ( "Please set init_from_params to load the infer model.") model_dict, _ = fluid.load_dygraph( os.path.join(args.init_from_params, "transformer")) # to avoid a longer length than training, reset the size of position # encoding to max_length model_dict["encoder.pos_encoder.weight"] = position_encoding_init( args.max_length + 1, args.d_model) model_dict["decoder.pos_encoder.weight"] = position_encoding_init( args.max_length + 1, args.d_model) transformer.load_dict(model_dict) # set evaluate mode transformer.eval() f = open(args.output_file, "wb") for input_data in test_loader(): (src_word, src_pos, src_slf_attn_bias, trg_word, trg_src_attn_bias) = input_data finished_seq, finished_scores = transformer.beam_search( src_word, src_pos, src_slf_attn_bias, trg_word, trg_src_attn_bias, bos_id=args.bos_idx, eos_id=args.eos_idx, beam_size=args.beam_size, max_len=args.max_out_len) finished_seq = finished_seq.numpy() finished_scores = finished_scores.numpy() for ins in finished_seq: for beam_idx, beam in enumerate(ins): if beam_idx >= args.n_best: break id_list = post_process_seq(beam, args.bos_idx, args.eos_idx) word_list = [trg_idx2word[id] for id in id_list] sequence = b" ".join(word_list) + b"\n" f.write(sequence) if __name__ == "__main__": args = PDConfig(yaml_file="./transformer.yaml") args.build() args.Print() check_gpu(args.use_cuda) check_version() do_predict(args)