# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import paddle.fluid as fluid from paddle.fluid import ParamAttr import numpy as np import math from hapi.model import Model, Loss from hapi.download import get_weights_path __all__ = ["BMN", "BmnLoss", "bmn"] DATATYPE = 'float32' pretrain_infos = { 'bmn': ('https://paddlemodels.bj.bcebos.com/hapi/bmn.pdparams', 'aa84e3386e1fbd117fb96fa572feeb94') } def _get_interp1d_bin_mask(seg_xmin, seg_xmax, tscale, num_sample, num_sample_perbin): """ generate sample mask for a boundary-matching pair """ plen = float(seg_xmax - seg_xmin) plen_sample = plen / (num_sample * num_sample_perbin - 1.0) total_samples = [ seg_xmin + plen_sample * ii for ii in range(num_sample * num_sample_perbin) ] p_mask = [] for idx in range(num_sample): bin_samples = total_samples[idx * num_sample_perbin:(idx + 1) * num_sample_perbin] bin_vector = np.zeros([tscale]) for sample in bin_samples: sample_upper = math.ceil(sample) sample_decimal, sample_down = math.modf(sample) if int(sample_down) <= (tscale - 1) and int(sample_down) >= 0: bin_vector[int(sample_down)] += 1 - sample_decimal if int(sample_upper) <= (tscale - 1) and int(sample_upper) >= 0: bin_vector[int(sample_upper)] += sample_decimal bin_vector = 1.0 / num_sample_perbin * bin_vector p_mask.append(bin_vector) p_mask = np.stack(p_mask, axis=1) return p_mask def get_interp1d_mask(tscale, dscale, prop_boundary_ratio, num_sample, num_sample_perbin): """ generate sample mask for each point in Boundary-Matching Map """ mask_mat = [] for start_index in range(tscale): mask_mat_vector = [] for duration_index in range(dscale): if start_index + duration_index < tscale: p_xmin = start_index p_xmax = start_index + duration_index center_len = float(p_xmax - p_xmin) + 1 sample_xmin = p_xmin - center_len * prop_boundary_ratio sample_xmax = p_xmax + center_len * prop_boundary_ratio p_mask = _get_interp1d_bin_mask(sample_xmin, sample_xmax, tscale, num_sample, num_sample_perbin) else: p_mask = np.zeros([tscale, num_sample]) mask_mat_vector.append(p_mask) mask_mat_vector = np.stack(mask_mat_vector, axis=2) mask_mat.append(mask_mat_vector) mask_mat = np.stack(mask_mat, axis=3) mask_mat = mask_mat.astype(np.float32) sample_mask = np.reshape(mask_mat, [tscale, -1]) return sample_mask # Net class Conv1D(fluid.dygraph.Layer): def __init__(self, prefix, num_channels=256, num_filters=256, size_k=3, padding=1, groups=1, act="relu"): super(Conv1D, self).__init__() fan_in = num_channels * size_k * 1 k = 1. / math.sqrt(fan_in) param_attr = ParamAttr( name=prefix + "_w", initializer=fluid.initializer.Uniform( low=-k, high=k)) bias_attr = ParamAttr( name=prefix + "_b", initializer=fluid.initializer.Uniform( low=-k, high=k)) self._conv2d = fluid.dygraph.Conv2D( num_channels=num_channels, num_filters=num_filters, filter_size=(1, size_k), stride=1, padding=(0, padding), groups=groups, act=act, param_attr=param_attr, bias_attr=bias_attr) def forward(self, x): x = fluid.layers.unsqueeze(input=x, axes=[2]) x = self._conv2d(x) x = fluid.layers.squeeze(input=x, axes=[2]) return x class BMN(Model): """BMN model from `"BMN: Boundary-Matching Network for Temporal Action Proposal Generation" `_ Args: tscale (int): sequence length, default 100. dscale (int): max duration length, default 100. prop_boundary_ratio (float): ratio of expanded temporal region in proposal boundary, default 0.5. num_sample (int): number of samples betweent starting boundary and ending boundary of each propoasl, default 32. num_sample_perbin (int): number of selected points in each sample, default 3. """ def __init__(self, tscale, dscale, prop_boundary_ratio, num_sample, num_sample_perbin): super(BMN, self).__init__() #init config self.tscale = tscale self.dscale = dscale self.prop_boundary_ratio = prop_boundary_ratio self.num_sample = num_sample self.num_sample_perbin = num_sample_perbin self.hidden_dim_1d = 256 self.hidden_dim_2d = 128 self.hidden_dim_3d = 512 # Base Module self.b_conv1 = Conv1D( prefix="Base_1", num_channels=400, num_filters=self.hidden_dim_1d, size_k=3, padding=1, groups=4, act="relu") self.b_conv2 = Conv1D( prefix="Base_2", num_filters=self.hidden_dim_1d, size_k=3, padding=1, groups=4, act="relu") # Temporal Evaluation Module self.ts_conv1 = Conv1D( prefix="TEM_s1", num_filters=self.hidden_dim_1d, size_k=3, padding=1, groups=4, act="relu") self.ts_conv2 = Conv1D( prefix="TEM_s2", num_filters=1, size_k=1, padding=0, act="sigmoid") self.te_conv1 = Conv1D( prefix="TEM_e1", num_filters=self.hidden_dim_1d, size_k=3, padding=1, groups=4, act="relu") self.te_conv2 = Conv1D( prefix="TEM_e2", num_filters=1, size_k=1, padding=0, act="sigmoid") #Proposal Evaluation Module self.p_conv1 = Conv1D( prefix="PEM_1d", num_filters=self.hidden_dim_2d, size_k=3, padding=1, act="relu") # get sample mask sample_mask_array = get_interp1d_mask( self.tscale, self.dscale, self.prop_boundary_ratio, self.num_sample, self.num_sample_perbin) self.sample_mask = fluid.layers.create_parameter( shape=[self.tscale, self.num_sample * self.dscale * self.tscale], dtype=DATATYPE, attr=fluid.ParamAttr( name="sample_mask", trainable=False), default_initializer=fluid.initializer.NumpyArrayInitializer( sample_mask_array)) self.sample_mask.stop_gradient = True self.p_conv3d1 = fluid.dygraph.Conv3D( num_channels=128, num_filters=self.hidden_dim_3d, filter_size=(self.num_sample, 1, 1), stride=(self.num_sample, 1, 1), padding=0, act="relu", param_attr=ParamAttr(name="PEM_3d1_w"), bias_attr=ParamAttr(name="PEM_3d1_b")) self.p_conv2d1 = fluid.dygraph.Conv2D( num_channels=512, num_filters=self.hidden_dim_2d, filter_size=1, stride=1, padding=0, act="relu", param_attr=ParamAttr(name="PEM_2d1_w"), bias_attr=ParamAttr(name="PEM_2d1_b")) self.p_conv2d2 = fluid.dygraph.Conv2D( num_channels=128, num_filters=self.hidden_dim_2d, filter_size=3, stride=1, padding=1, act="relu", param_attr=ParamAttr(name="PEM_2d2_w"), bias_attr=ParamAttr(name="PEM_2d2_b")) self.p_conv2d3 = fluid.dygraph.Conv2D( num_channels=128, num_filters=self.hidden_dim_2d, filter_size=3, stride=1, padding=1, act="relu", param_attr=ParamAttr(name="PEM_2d3_w"), bias_attr=ParamAttr(name="PEM_2d3_b")) self.p_conv2d4 = fluid.dygraph.Conv2D( num_channels=128, num_filters=2, filter_size=1, stride=1, padding=0, act="sigmoid", param_attr=ParamAttr(name="PEM_2d4_w"), bias_attr=ParamAttr(name="PEM_2d4_b")) def forward(self, x): #Base Module x = self.b_conv1(x) x = self.b_conv2(x) #TEM xs = self.ts_conv1(x) xs = self.ts_conv2(xs) xs = fluid.layers.squeeze(xs, axes=[1]) xe = self.te_conv1(x) xe = self.te_conv2(xe) xe = fluid.layers.squeeze(xe, axes=[1]) #PEM xp = self.p_conv1(x) #BM layer xp = fluid.layers.matmul(xp, self.sample_mask) xp = fluid.layers.reshape( xp, shape=[0, 0, -1, self.dscale, self.tscale]) xp = self.p_conv3d1(xp) xp = fluid.layers.squeeze(xp, axes=[2]) xp = self.p_conv2d1(xp) xp = self.p_conv2d2(xp) xp = self.p_conv2d3(xp) xp = self.p_conv2d4(xp) return xp, xs, xe class BmnLoss(Loss): """Loss for BMN model Args: tscale (int): sequence length, default 100. dscale (int): max duration length, default 100. """ def __init__(self, tscale, dscale): super(BmnLoss, self).__init__() self.tscale = tscale self.dscale = dscale def _get_mask(self): bm_mask = [] for idx in range(self.dscale): mask_vector = [1 for i in range(self.tscale - idx) ] + [0 for i in range(idx)] bm_mask.append(mask_vector) bm_mask = np.array(bm_mask, dtype=np.float32) self_bm_mask = fluid.layers.create_global_var( shape=[self.dscale, self.tscale], value=0, dtype=DATATYPE, persistable=True) fluid.layers.assign(bm_mask, self_bm_mask) self_bm_mask.stop_gradient = True return self_bm_mask def tem_loss_func(self, pred_start, pred_end, gt_start, gt_end): def bi_loss(pred_score, gt_label): pred_score = fluid.layers.reshape( x=pred_score, shape=[-1], inplace=False) gt_label = fluid.layers.reshape( x=gt_label, shape=[-1], inplace=False) gt_label.stop_gradient = True pmask = fluid.layers.cast(x=(gt_label > 0.5), dtype=DATATYPE) num_entries = fluid.layers.cast( fluid.layers.shape(pmask), dtype=DATATYPE) num_positive = fluid.layers.cast( fluid.layers.reduce_sum(pmask), dtype=DATATYPE) ratio = num_entries / num_positive coef_0 = 0.5 * ratio / (ratio - 1) coef_1 = 0.5 * ratio epsilon = 0.000001 temp = fluid.layers.log(pred_score + epsilon) loss_pos = fluid.layers.elementwise_mul( fluid.layers.log(pred_score + epsilon), pmask) loss_pos = coef_1 * fluid.layers.reduce_mean(loss_pos) loss_neg = fluid.layers.elementwise_mul( fluid.layers.log(1.0 - pred_score + epsilon), (1.0 - pmask)) loss_neg = coef_0 * fluid.layers.reduce_mean(loss_neg) loss = -1 * (loss_pos + loss_neg) return loss loss_start = bi_loss(pred_start, gt_start) loss_end = bi_loss(pred_end, gt_end) loss = loss_start + loss_end return loss def pem_reg_loss_func(self, pred_score, gt_iou_map, mask): gt_iou_map = fluid.layers.elementwise_mul(gt_iou_map, mask) u_hmask = fluid.layers.cast(x=gt_iou_map > 0.7, dtype=DATATYPE) u_mmask = fluid.layers.logical_and(gt_iou_map <= 0.7, gt_iou_map > 0.3) u_mmask = fluid.layers.cast(x=u_mmask, dtype=DATATYPE) u_lmask = fluid.layers.logical_and(gt_iou_map <= 0.3, gt_iou_map >= 0.) u_lmask = fluid.layers.cast(x=u_lmask, dtype=DATATYPE) u_lmask = fluid.layers.elementwise_mul(u_lmask, mask) num_h = fluid.layers.cast( fluid.layers.reduce_sum(u_hmask), dtype=DATATYPE) num_m = fluid.layers.cast( fluid.layers.reduce_sum(u_mmask), dtype=DATATYPE) num_l = fluid.layers.cast( fluid.layers.reduce_sum(u_lmask), dtype=DATATYPE) r_m = num_h / num_m u_smmask = fluid.layers.uniform_random( shape=[gt_iou_map.shape[1], gt_iou_map.shape[2]], dtype=DATATYPE, min=0.0, max=1.0) u_smmask = fluid.layers.elementwise_mul(u_mmask, u_smmask) u_smmask = fluid.layers.cast(x=(u_smmask > (1. - r_m)), dtype=DATATYPE) r_l = num_h / num_l u_slmask = fluid.layers.uniform_random( shape=[gt_iou_map.shape[1], gt_iou_map.shape[2]], dtype=DATATYPE, min=0.0, max=1.0) u_slmask = fluid.layers.elementwise_mul(u_lmask, u_slmask) u_slmask = fluid.layers.cast(x=(u_slmask > (1. - r_l)), dtype=DATATYPE) weights = u_hmask + u_smmask + u_slmask weights.stop_gradient = True loss = fluid.layers.square_error_cost(pred_score, gt_iou_map) loss = fluid.layers.elementwise_mul(loss, weights) loss = 0.5 * fluid.layers.reduce_sum(loss) / fluid.layers.reduce_sum( weights) return loss def pem_cls_loss_func(self, pred_score, gt_iou_map, mask): gt_iou_map = fluid.layers.elementwise_mul(gt_iou_map, mask) gt_iou_map.stop_gradient = True pmask = fluid.layers.cast(x=(gt_iou_map > 0.9), dtype=DATATYPE) nmask = fluid.layers.cast(x=(gt_iou_map <= 0.9), dtype=DATATYPE) nmask = fluid.layers.elementwise_mul(nmask, mask) num_positive = fluid.layers.reduce_sum(pmask) num_entries = num_positive + fluid.layers.reduce_sum(nmask) ratio = num_entries / num_positive coef_0 = 0.5 * ratio / (ratio - 1) coef_1 = 0.5 * ratio epsilon = 0.000001 loss_pos = fluid.layers.elementwise_mul( fluid.layers.log(pred_score + epsilon), pmask) loss_pos = coef_1 * fluid.layers.reduce_sum(loss_pos) loss_neg = fluid.layers.elementwise_mul( fluid.layers.log(1.0 - pred_score + epsilon), nmask) loss_neg = coef_0 * fluid.layers.reduce_sum(loss_neg) loss = -1 * (loss_pos + loss_neg) / num_entries return loss def forward(self, outputs, labels): pred_bm, pred_start, pred_end = outputs if len(labels) == 3: gt_iou_map, gt_start, gt_end = labels elif len(labels) == 4: # video_index used in eval mode gt_iou_map, gt_start, gt_end, video_index = labels pred_bm_reg = fluid.layers.squeeze( fluid.layers.slice( pred_bm, axes=[1], starts=[0], ends=[1]), axes=[1]) pred_bm_cls = fluid.layers.squeeze( fluid.layers.slice( pred_bm, axes=[1], starts=[1], ends=[2]), axes=[1]) bm_mask = self._get_mask() pem_reg_loss = self.pem_reg_loss_func(pred_bm_reg, gt_iou_map, bm_mask) pem_cls_loss = self.pem_cls_loss_func(pred_bm_cls, gt_iou_map, bm_mask) tem_loss = self.tem_loss_func(pred_start, pred_end, gt_start, gt_end) loss = tem_loss + 10 * pem_reg_loss + pem_cls_loss return loss def bmn(tscale, dscale, prop_boundary_ratio, num_sample, num_sample_perbin, pretrained=True): """BMN model Args: tscale (int): sequence length, default 100. dscale (int): max duration length, default 100. prop_boundary_ratio (float): ratio of expanded temporal region in proposal boundary, default 0.5. num_sample (int): number of samples betweent starting boundary and ending boundary of each propoasl, default 32. num_sample_perbin (int): number of selected points in each sample, default 3. pretrained (bool): If True, returns a model with pre-trained model, default True. """ model = BMN(tscale, dscale, prop_boundary_ratio, num_sample, num_sample_perbin) if pretrained: weight_path = get_weights_path(*(pretrain_infos['bmn'])) assert weight_path.endswith('.pdparams'), \ "suffix of weight must be .pdparams" model.load(weight_path) return model