# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import argparse import numpy as np from scipy.misc import imsave import paddle import paddle.fluid as fluid from paddle.static import InputSpec as Input from check import check_gpu, check_version from cyclegan import Generator, GeneratorCombine import data as data def main(): place = paddle.set_device(FLAGS.device) fluid.enable_dygraph(place) if FLAGS.dynamic else None im_shape = [-1, 3, 256, 256] input_A = Input(im_shape, 'float32', 'input_A') input_B = Input(im_shape, 'float32', 'input_B') # Generators g_AB = Generator() g_BA = Generator() g = paddle.Model( GeneratorCombine( g_AB, g_BA, is_train=False), inputs=[input_A, input_B]) g.prepare() g.load(FLAGS.init_model, skip_mismatch=True, reset_optimizer=True) if not os.path.exists(FLAGS.output): os.makedirs(FLAGS.output) test_data_A = data.TestDataA() test_data_B = data.TestDataB() for i in range(len(test_data_A)): data_A, A_name = test_data_A[i] data_B, B_name = test_data_B[i] data_A = np.array(data_A).astype("float32") data_B = np.array(data_B).astype("float32") fake_A, fake_B, cyc_A, cyc_B = g.test_batch([data_A, data_B]) datas = [fake_A, fake_B, cyc_A, cyc_B, data_A, data_B] odatas = [] for o in datas: d = np.squeeze(o[0]).transpose([1, 2, 0]) im = ((d + 1) * 127.5).astype(np.uint8) odatas.append(im) imsave(FLAGS.output + "/fakeA_" + B_name, odatas[0]) imsave(FLAGS.output + "/fakeB_" + A_name, odatas[1]) imsave(FLAGS.output + "/cycA_" + A_name, odatas[2]) imsave(FLAGS.output + "/cycB_" + B_name, odatas[3]) imsave(FLAGS.output + "/inputA_" + A_name, odatas[4]) imsave(FLAGS.output + "/inputB_" + B_name, odatas[5]) if __name__ == "__main__": parser = argparse.ArgumentParser("CycleGAN test") parser.add_argument( "-d", "--dynamic", action='store_true', help="Enable dygraph mode") parser.add_argument( "-p", "--device", type=str, default='gpu', help="device to use, gpu or cpu") parser.add_argument( "-b", "--batch_size", default=1, type=int, help="batch size") parser.add_argument( "-o", '--output', type=str, default='output/eval', help="The test result to be saved to.") parser.add_argument( "-m", "--init_model", type=str, default='checkpoint/199', help="The init model file of directory.") FLAGS = parser.parse_args() print(FLAGS) check_gpu(str.lower(FLAGS.device) == 'gpu') check_version() main()