# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import random import argparse import contextlib import time import paddle import paddle.fluid as fluid from hapi.model import Model, Input, set_device from check import check_gpu, check_version from cyclegan import Generator, Discriminator, GeneratorCombine, GLoss, DLoss import data as data step_per_epoch = 2974 def opt(parameters): lr_base = 0.0002 bounds = [100, 120, 140, 160, 180] lr = [1., 0.8, 0.6, 0.4, 0.2, 0.1] bounds = [i * step_per_epoch for i in bounds] lr = [i * lr_base for i in lr] optimizer = fluid.optimizer.Adam( learning_rate=fluid.layers.piecewise_decay( boundaries=bounds, values=lr), parameter_list=parameters, beta1=0.5) return optimizer def main(): place = set_device(FLAGS.device) fluid.enable_dygraph(place) if FLAGS.dynamic else None # Generators g_AB = Generator() g_BA = Generator() # Discriminators d_A = Discriminator() d_B = Discriminator() g = GeneratorCombine(g_AB, g_BA, d_A, d_B) da_params = d_A.parameters() db_params = d_B.parameters() g_params = g_AB.parameters() + g_BA.parameters() da_optimizer = opt(da_params) db_optimizer = opt(db_params) g_optimizer = opt(g_params) im_shape = [None, 3, 256, 256] input_A = Input(im_shape, 'float32', 'input_A') input_B = Input(im_shape, 'float32', 'input_B') fake_A = Input(im_shape, 'float32', 'fake_A') fake_B = Input(im_shape, 'float32', 'fake_B') g_AB.prepare(inputs=[input_A], device=FLAGS.device) g_BA.prepare(inputs=[input_B], device=FLAGS.device) g.prepare(g_optimizer, GLoss(), inputs=[input_A, input_B], device=FLAGS.device) d_A.prepare(da_optimizer, DLoss(), inputs=[input_B, fake_B], device=FLAGS.device) d_B.prepare(db_optimizer, DLoss(), inputs=[input_A, fake_A], device=FLAGS.device) if FLAGS.resume: g.load(FLAGS.resume) loader_A = paddle.io.DataLoader( data.DataA(), places=place, shuffle=True, return_list=True, batch_size=FLAGS.batch_size) loader_B = paddle.io.DataLoader( data.DataB(), places=place, shuffle=True, return_list=True, batch_size=FLAGS.batch_size) A_pool = data.ImagePool() B_pool = data.ImagePool() for epoch in range(FLAGS.epoch): for i, (data_A, data_B) in enumerate(zip(loader_A, loader_B)): data_A = data_A[0][0] if not FLAGS.dynamic else data_A[0] data_B = data_B[0][0] if not FLAGS.dynamic else data_B[0] start = time.time() fake_B = g_AB.test_batch(data_A)[0] fake_A = g_BA.test_batch(data_B)[0] g_loss = g.train_batch([data_A, data_B])[0] fake_pb = B_pool.get(fake_B) da_loss = d_A.train_batch([data_B, fake_pb])[0] fake_pa = A_pool.get(fake_A) db_loss = d_B.train_batch([data_A, fake_pa])[0] t = time.time() - start if i % 20 == 0: print("epoch: {} | step: {:3d} | g_loss: {:.4f} | " \ "da_loss: {:.4f} | db_loss: {:.4f} | s/step {:.4f}". format(epoch, i, g_loss[0], da_loss[0], db_loss[0], t)) g.save('{}/{}'.format(FLAGS.checkpoint_path, epoch)) if __name__ == "__main__": parser = argparse.ArgumentParser("CycleGAN Training on Cityscapes") parser.add_argument( "-d", "--dynamic", action='store_true', help="Enable dygraph mode") parser.add_argument( "-p", "--device", type=str, default='gpu', help="device to use, gpu or cpu") parser.add_argument( "-e", "--epoch", default=200, type=int, help="Epoch number") parser.add_argument( "-b", "--batch_size", default=1, type=int, help="batch size") parser.add_argument( "-o", "--checkpoint_path", type=str, default='checkpoint', help="path to save checkpoint") parser.add_argument( "-r", "--resume", default=None, type=str, help="checkpoint path to resume") FLAGS = parser.parse_args() print(FLAGS) check_gpu(str.lower(FLAGS.device) == 'gpu') check_version() main()