# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import glob import numpy as np import argparse from PIL import Image from scipy.misc import imsave import paddle.fluid as fluid from hapi.model import Model, Input, set_device from check import check_gpu, check_version from cyclegan import Generator, GeneratorCombine def main(): place = set_device(FLAGS.device) fluid.enable_dygraph(place) if FLAGS.dynamic else None # Generators g_AB = Generator() g_BA = Generator() g = GeneratorCombine(g_AB, g_BA, is_train=False) im_shape = [-1, 3, 256, 256] input_A = Input(im_shape, 'float32', 'input_A') input_B = Input(im_shape, 'float32', 'input_B') g.prepare(inputs=[input_A, input_B], device=FLAGS.device) g.load(FLAGS.init_model, skip_mismatch=True, reset_optimizer=True) out_path = FLAGS.output + "/single" if not os.path.exists(out_path): os.makedirs(out_path) for f in glob.glob(FLAGS.input): image_name = os.path.basename(f) image = Image.open(f).convert('RGB') image = image.resize((256, 256), Image.BICUBIC) image = np.array(image) / 127.5 - 1 image = image[:, :, 0:3].astype("float32") data = image.transpose([2, 0, 1])[np.newaxis, :] if FLAGS.input_style == "A": _, fake, _, _ = g.test_batch([data, data]) if FLAGS.input_style == "B": fake, _, _, _ = g.test_batch([data, data]) fake = np.squeeze(fake[0]).transpose([1, 2, 0]) opath = "{}/fake{}{}".format(out_path, FLAGS.input_style, image_name) imsave(opath, ((fake + 1) * 127.5).astype(np.uint8)) print("transfer {} to {}".format(f, opath)) if __name__ == "__main__": parser = argparse.ArgumentParser("CycleGAN inference") parser.add_argument( "-d", "--dynamic", action='store_true', help="Enable dygraph mode") parser.add_argument( "-p", "--device", type=str, default='gpu', help="device to use, gpu or cpu") parser.add_argument( "-i", "--input", type=str, default='./image/testA/123_A.jpg', help="input image") parser.add_argument( "-o", '--output', type=str, default='output', help="The test result to be saved to.") parser.add_argument( "-m", "--init_model", type=str, default='checkpoint/199', help="The init model file of directory.") parser.add_argument( "-s", "--input_style", type=str, default='A', help="A or B") FLAGS = parser.parse_args() print(FLAGS) check_gpu(str.lower(FLAGS.device) == 'gpu') check_version() main()