# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import paddle.fluid as fluid import argparse import logging import sys import os from hapi.model import set_device, Input from hapi.vision.models import bmn, BmnLoss from reader import BmnDataset from config_utils import * DATATYPE = 'float32' logging.root.handlers = [] FORMAT = '[%(levelname)s: %(filename)s: %(lineno)4d]: %(message)s' logging.basicConfig(level=logging.INFO, format=FORMAT, stream=sys.stdout) logger = logging.getLogger(__name__) def parse_args(): parser = argparse.ArgumentParser("Paddle high level api of BMN.") parser.add_argument( "-d", "--dynamic", default=True, action='store_true', help="enable dygraph mode") parser.add_argument( '--config_file', type=str, default='bmn.yaml', help='path to config file of model') parser.add_argument( '--batch_size', type=int, default=None, help='training batch size. None to use config file setting.') parser.add_argument( '--learning_rate', type=float, default=0.001, help='learning rate use for training. None to use config file setting.') parser.add_argument( '--resume', type=str, default=None, help='filename to resume training based on previous checkpoints. ' 'None for not resuming any checkpoints.') parser.add_argument( '--device', type=str, default='gpu', help='gpu or cpu, default use gpu.') parser.add_argument( '--epoch', type=int, default=9, help='epoch number, 0 for read from config file') parser.add_argument( '--valid_interval', type=int, default=1, help='validation epoch interval, 0 for no validation.') parser.add_argument( '--save_dir', type=str, default="checkpoint", help='path to save train snapshoot') parser.add_argument( '--log_interval', type=int, default=10, help='mini-batch interval to log.') args = parser.parse_args() return args # Optimizer def optimizer(cfg, parameter_list): bd = [cfg.TRAIN.lr_decay_iter] base_lr = cfg.TRAIN.learning_rate lr_decay = cfg.TRAIN.learning_rate_decay l2_weight_decay = cfg.TRAIN.l2_weight_decay lr = [base_lr, base_lr * lr_decay] optimizer = fluid.optimizer.Adam( fluid.layers.piecewise_decay( boundaries=bd, values=lr), parameter_list=parameter_list, regularization=fluid.regularizer.L2DecayRegularizer( regularization_coeff=l2_weight_decay)) return optimizer # TRAIN def train_bmn(args): device = set_device(args.device) fluid.enable_dygraph(device) if args.dynamic else None if not os.path.isdir(args.save_dir): os.makedirs(args.save_dir) config = parse_config(args.config_file) train_cfg = merge_configs(config, 'train', vars(args)) val_cfg = merge_configs(config, 'valid', vars(args)) inputs = [ Input( [None, config.MODEL.feat_dim, config.MODEL.tscale], 'float32', name='feat_input') ] gt_iou_map = Input( [None, config.MODEL.dscale, config.MODEL.tscale], 'float32', name='gt_iou_map') gt_start = Input([None, config.MODEL.tscale], 'float32', name='gt_start') gt_end = Input([None, config.MODEL.tscale], 'float32', name='gt_end') labels = [gt_iou_map, gt_start, gt_end] # data train_dataset = BmnDataset(train_cfg, 'train') val_dataset = BmnDataset(val_cfg, 'valid') # model model = bmn(config, pretrained=False) optim = optimizer(config, parameter_list=model.parameters()) model.prepare( optimizer=optim, loss_function=BmnLoss(config), inputs=inputs, labels=labels, device=device) # if resume weights is given, load resume weights directly if args.resume is not None: model.load(args.resume) model.fit(train_data=train_dataset, eval_data=val_dataset, batch_size=train_cfg.TRAIN.batch_size, epochs=args.epoch, eval_freq=args.valid_interval, log_freq=args.log_interval, save_dir=args.save_dir, shuffle=train_cfg.TRAIN.use_shuffle, num_workers=train_cfg.TRAIN.num_workers, drop_last=True) if __name__ == "__main__": args = parse_args() train_bmn(args)