Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
hapi
提交
eb41212a
H
hapi
项目概览
PaddlePaddle
/
hapi
通知
11
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
4
列表
看板
标记
里程碑
合并请求
7
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
H
hapi
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
4
Issue
4
列表
看板
标记
里程碑
合并请求
7
合并请求
7
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
eb41212a
编写于
5月 07, 2020
作者:
L
LielinJiang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add readme
上级
79e136bd
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
55 addition
and
0 deletion
+55
-0
examples/handwritten_number_recognition/README.md
examples/handwritten_number_recognition/README.md
+55
-0
未找到文件。
examples/handwritten_number_recognition/README.md
0 → 100644
浏览文件 @
eb41212a
# MNIST
当我们学习编程的时候,编写的第一个程序一般是实现打印"Hello World"。而机器学习(或深度学习)的入门教程,一般都是 MNIST 数据库上的手写识别问题。原因是手写识别属于典型的图像分类问题,比较简单,同时MNIST数据集也很完备。
本页将介绍如何使用PaddlePaddle高级API(hapi)实现MNIST,包括
[
安装
](
#installation
)
、
[
训练
](
#training-a-model
)
、
[
输出
](
#log
)
、
[
参数保存
](
#save
)
、
[
模型评估
](
#evaluation
)
。
## 安装
在当前目录下运行样例代码需要PadddlePaddle的v2.0.0或以上的版本。如果你的运行环境中的PaddlePaddle低于此版本,请根据安装文档中的说明来更新PaddlePaddle。
## 训练
可以通过如下的方式启动训练:
```
python mnist.py
```
上面的方式默认使用的静态图模式,切换动态图模式训练可以加
```--dynamic```
```
python mnist.py --dynamic
```
多卡进行模型训练,启动训练的方式:
```
python -m paddle.distributed.launch mnist.py
```
## 输出
执行训练开始后,将得到类似如下的输出。
```
Epoch 1/10
step 10/469 - loss: 2.4547 - acc_top1: 0.1273 - acc_top2: 0.2305 - 94ms/step
step 20/469 - loss: 1.2578 - acc_top1: 0.3063 - acc_top2: 0.4316 - 48ms/step
step 30/469 - loss: 0.7918 - acc_top1: 0.4344 - acc_top2: 0.5638 - 33ms/step
step 40/469 - loss: 0.6947 - acc_top1: 0.5148 - acc_top2: 0.6412 - 25ms/step
step 50/469 - loss: 0.5452 - acc_top1: 0.5731 - acc_top2: 0.6959 - 20ms/step
step 60/469 - loss: 0.4184 - acc_top1: 0.6133 - acc_top2: 0.7314 - 17ms/step
step 70/469 - loss: 0.5143 - acc_top1: 0.6423 - acc_top2: 0.7595 - 15ms/step
step 80/469 - loss: 0.5688 - acc_top1: 0.6658 - acc_top2: 0.7808 - 13ms/step
...
```
## 参数保存
训练好的模型默认会保存在
```mnist_checkpoint/```
文件加下,可以通过
```--output-dir```
命令来指定你想要保存的文件夹位置。
## 模型评估
执行如下命令进行评估,
```--resume```
后面指定训练好的模型路径
```
python mnist.py --resume mnist_checkpoint/final.pdparams --eval-only
```
切换动态图模式评估:
```
python mnist.py --resume mnist_checkpoint/final.pdparams --eval-only
```
多卡评估
```
python -m paddle.distributed.launch mnist.py --resume mnist_checkpoint/final.pdparams --eval-only
```
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录