Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
hapi
提交
d61339cc
H
hapi
项目概览
PaddlePaddle
/
hapi
通知
11
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
4
列表
看板
标记
里程碑
合并请求
7
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
H
hapi
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
4
Issue
4
列表
看板
标记
里程碑
合并请求
7
合并请求
7
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d61339cc
编写于
5月 07, 2020
作者:
L
LielinJiang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
mv mnist to examples
上级
701a823e
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
94 addition
and
404 deletion
+94
-404
examples/handwritten_number_recognition/mnist.py
examples/handwritten_number_recognition/mnist.py
+94
-0
resnet.py
resnet.py
+0
-404
未找到文件。
mnist.py
→
examples/handwritten_number_recognition/
mnist.py
浏览文件 @
d61339cc
...
...
@@ -16,94 +16,15 @@ from __future__ import division
from
__future__
import
print_function
import
argparse
import
contextlib
import
os
import
numpy
as
np
from
paddle
import
fluid
from
paddle.fluid.optimizer
import
Momentum
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
Linear
from
hapi.datasets.mnist
import
MNIST
as
MnistDataset
from
hapi.model
import
Model
,
Input
,
set_device
from
hapi.model
import
Input
,
set_device
from
hapi.loss
import
CrossEntropy
from
hapi.metrics
import
Accuracy
class
SimpleImgConvPool
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
filter_size
,
pool_size
,
pool_stride
,
pool_padding
=
0
,
pool_type
=
'max'
,
global_pooling
=
False
,
conv_stride
=
1
,
conv_padding
=
0
,
conv_dilation
=
1
,
conv_groups
=
None
,
act
=
None
,
use_cudnn
=
False
,
param_attr
=
None
,
bias_attr
=
None
):
super
(
SimpleImgConvPool
,
self
).
__init__
(
'SimpleConv'
)
self
.
_conv2d
=
Conv2D
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
conv_stride
,
padding
=
conv_padding
,
dilation
=
conv_dilation
,
groups
=
conv_groups
,
param_attr
=
None
,
bias_attr
=
None
,
use_cudnn
=
use_cudnn
)
self
.
_pool2d
=
Pool2D
(
pool_size
=
pool_size
,
pool_type
=
pool_type
,
pool_stride
=
pool_stride
,
pool_padding
=
pool_padding
,
global_pooling
=
global_pooling
,
use_cudnn
=
use_cudnn
)
def
forward
(
self
,
inputs
):
x
=
self
.
_conv2d
(
inputs
)
x
=
self
.
_pool2d
(
x
)
return
x
class
MNIST
(
Model
):
def
__init__
(
self
):
super
(
MNIST
,
self
).
__init__
()
self
.
_simple_img_conv_pool_1
=
SimpleImgConvPool
(
1
,
20
,
5
,
2
,
2
,
act
=
"relu"
)
self
.
_simple_img_conv_pool_2
=
SimpleImgConvPool
(
20
,
50
,
5
,
2
,
2
,
act
=
"relu"
)
pool_2_shape
=
50
*
4
*
4
SIZE
=
10
scale
=
(
2.0
/
(
pool_2_shape
**
2
*
SIZE
))
**
0.5
self
.
_fc
=
Linear
(
800
,
10
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NormalInitializer
(
loc
=
0.0
,
scale
=
scale
)),
act
=
"softmax"
)
def
forward
(
self
,
inputs
):
inputs
=
fluid
.
layers
.
reshape
(
inputs
,
[
-
1
,
1
,
28
,
28
])
x
=
self
.
_simple_img_conv_pool_1
(
inputs
)
x
=
self
.
_simple_img_conv_pool_2
(
x
)
x
=
fluid
.
layers
.
flatten
(
x
,
axis
=
1
)
x
=
self
.
_fc
(
x
)
return
x
from
hapi.vision.models
import
LeNet
def
main
():
...
...
@@ -113,10 +34,10 @@ def main():
train_dataset
=
MnistDataset
(
mode
=
'train'
)
val_dataset
=
MnistDataset
(
mode
=
'test'
)
inputs
=
[
Input
([
None
,
784
],
'float32'
,
name
=
'image'
)]
inputs
=
[
Input
([
None
,
1
,
28
,
28
],
'float32'
,
name
=
'image'
)]
labels
=
[
Input
([
None
,
1
],
'int64'
,
name
=
'label'
)]
model
=
MNIST
()
model
=
LeNet
()
optim
=
Momentum
(
learning_rate
=
FLAGS
.
lr
,
momentum
=
.
9
,
parameter_list
=
model
.
parameters
())
...
...
@@ -127,9 +48,14 @@ def main():
inputs
,
labels
,
device
=
FLAGS
.
device
)
if
FLAGS
.
resume
is
not
None
:
model
.
load
(
FLAGS
.
resume
)
if
FLAGS
.
eval_only
:
model
.
evaluate
(
val_dataset
,
batch_size
=
FLAGS
.
batch_size
)
return
model
.
fit
(
train_dataset
,
val_dataset
,
epochs
=
FLAGS
.
epoch
,
...
...
@@ -144,7 +70,7 @@ if __name__ == '__main__':
parser
.
add_argument
(
"-d"
,
"--dynamic"
,
action
=
'store_true'
,
help
=
"enable dygraph mode"
)
parser
.
add_argument
(
"-e"
,
"--epoch"
,
default
=
2
,
type
=
int
,
help
=
"number of epoch"
)
"-e"
,
"--epoch"
,
default
=
10
,
type
=
int
,
help
=
"number of epoch"
)
parser
.
add_argument
(
'--lr'
,
'--learning-rate'
,
...
...
@@ -155,12 +81,14 @@ if __name__ == '__main__':
parser
.
add_argument
(
"-b"
,
"--batch_size"
,
default
=
128
,
type
=
int
,
help
=
"batch size"
)
parser
.
add_argument
(
"-
n"
,
"--num_devices"
,
default
=
1
,
type
=
int
,
help
=
"number of devices
"
)
"-
-output-dir"
,
type
=
str
,
default
=
'output'
,
help
=
"checkpoint save dir
"
)
parser
.
add_argument
(
"-r"
,
"--resume"
,
default
=
None
,
type
=
str
,
help
=
"checkpoint path to resume"
)
parser
.
add_argument
(
"--eval-only"
,
action
=
'store_true'
,
help
=
"only evaluate the model"
)
FLAGS
=
parser
.
parse_args
()
main
()
resnet.py
已删除
100644 → 0
浏览文件 @
701a823e
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
division
from
__future__
import
print_function
import
argparse
import
contextlib
import
math
import
os
import
random
import
time
import
cv2
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
from
paddle.fluid.dygraph.container
import
Sequential
from
model
import
Model
,
CrossEntropy
class
ConvBNLayer
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
filter_size
,
stride
=
1
,
groups
=
1
,
act
=
None
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
_conv
=
Conv2D
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
act
=
None
,
bias_attr
=
False
)
self
.
_batch_norm
=
BatchNorm
(
num_filters
,
act
=
act
)
def
forward
(
self
,
inputs
):
x
=
self
.
_conv
(
inputs
)
x
=
self
.
_batch_norm
(
x
)
return
x
class
BottleneckBlock
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
stride
,
shortcut
=
True
):
super
(
BottleneckBlock
,
self
).
__init__
()
self
.
conv0
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
'relu'
)
self
.
conv1
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
3
,
stride
=
stride
,
act
=
'relu'
)
self
.
conv2
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
act
=
None
)
if
not
shortcut
:
self
.
short
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
stride
=
stride
)
self
.
shortcut
=
shortcut
self
.
_num_channels_out
=
num_filters
*
4
def
forward
(
self
,
inputs
):
x
=
self
.
conv0
(
inputs
)
conv1
=
self
.
conv1
(
x
)
conv2
=
self
.
conv2
(
conv1
)
if
self
.
shortcut
:
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
x
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
'relu'
)
return
layer_helper
.
append_activation
(
x
)
class
ResNet
(
Model
):
def
__init__
(
self
,
depth
=
50
,
num_classes
=
1000
):
super
(
ResNet
,
self
).
__init__
()
layer_config
=
{
50
:
[
3
,
4
,
6
,
3
],
101
:
[
3
,
4
,
23
,
3
],
152
:
[
3
,
8
,
36
,
3
],
}
assert
depth
in
layer_config
.
keys
(),
\
"supported depth are {} but input layer is {}"
.
format
(
layer_config
.
keys
(),
depth
)
layers
=
layer_config
[
depth
]
num_in
=
[
64
,
256
,
512
,
1024
]
num_out
=
[
64
,
128
,
256
,
512
]
self
.
conv
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
)
self
.
pool
=
Pool2D
(
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
)
self
.
layers
=
[]
for
idx
,
num_blocks
in
enumerate
(
layers
):
blocks
=
[]
shortcut
=
False
for
b
in
range
(
num_blocks
):
block
=
BottleneckBlock
(
num_channels
=
num_in
[
idx
]
if
b
==
0
else
num_out
[
idx
]
*
4
,
num_filters
=
num_out
[
idx
],
stride
=
2
if
b
==
0
and
idx
!=
0
else
1
,
shortcut
=
shortcut
)
blocks
.
append
(
block
)
shortcut
=
True
layer
=
self
.
add_sublayer
(
"layer_{}"
.
format
(
idx
),
Sequential
(
*
blocks
))
self
.
layers
.
append
(
layer
)
self
.
global_pool
=
Pool2D
(
pool_size
=
7
,
pool_type
=
'avg'
,
global_pooling
=
True
)
stdv
=
1.0
/
math
.
sqrt
(
2048
*
1.0
)
self
.
fc_input_dim
=
num_out
[
-
1
]
*
4
*
1
*
1
self
.
fc
=
Linear
(
self
.
fc_input_dim
,
num_classes
,
act
=
'softmax'
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
)))
def
forward
(
self
,
inputs
):
x
=
self
.
conv
(
inputs
)
x
=
self
.
pool
(
x
)
for
layer
in
self
.
layers
:
x
=
layer
(
x
)
x
=
self
.
global_pool
(
x
)
x
=
fluid
.
layers
.
reshape
(
x
,
shape
=
[
-
1
,
self
.
fc_input_dim
])
x
=
self
.
fc
(
x
)
return
x
def
make_optimizer
(
parameter_list
=
None
):
total_images
=
1281167
base_lr
=
FLAGS
.
lr
momentum
=
0.9
weight_decay
=
1e-4
step_per_epoch
=
int
(
math
.
floor
(
float
(
total_images
)
/
FLAGS
.
batch_size
))
boundaries
=
[
step_per_epoch
*
e
for
e
in
[
30
,
60
,
80
]]
values
=
[
base_lr
*
(
0.1
**
i
)
for
i
in
range
(
len
(
boundaries
)
+
1
)]
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
boundaries
,
values
=
values
)
learning_rate
=
fluid
.
layers
.
linear_lr_warmup
(
learning_rate
=
learning_rate
,
warmup_steps
=
5
*
step_per_epoch
,
start_lr
=
0.
,
end_lr
=
base_lr
)
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
learning_rate
,
momentum
=
momentum
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
weight_decay
),
parameter_list
=
parameter_list
)
return
optimizer
def
accuracy
(
pred
,
label
,
topk
=
(
1
,
)):
maxk
=
max
(
topk
)
pred
=
np
.
argsort
(
pred
)[:,
::
-
1
][:,
:
maxk
]
correct
=
(
pred
==
np
.
repeat
(
label
,
maxk
,
1
))
batch_size
=
label
.
shape
[
0
]
res
=
[]
for
k
in
topk
:
correct_k
=
correct
[:,
:
k
].
sum
()
res
.
append
(
100.0
*
correct_k
/
batch_size
)
return
res
def
center_crop_resize
(
img
):
h
,
w
=
img
.
shape
[:
2
]
c
=
int
(
224
/
256
*
min
((
h
,
w
)))
i
=
(
h
+
1
-
c
)
//
2
j
=
(
w
+
1
-
c
)
//
2
img
=
img
[
i
:
i
+
c
,
j
:
j
+
c
,
:]
return
cv2
.
resize
(
img
,
(
224
,
224
),
0
,
0
,
cv2
.
INTER_LINEAR
)
def
random_crop_resize
(
img
):
height
,
width
=
img
.
shape
[:
2
]
area
=
height
*
width
for
attempt
in
range
(
10
):
target_area
=
random
.
uniform
(
0.08
,
1.
)
*
area
log_ratio
=
(
math
.
log
(
3
/
4
),
math
.
log
(
4
/
3
))
aspect_ratio
=
math
.
exp
(
random
.
uniform
(
*
log_ratio
))
w
=
int
(
round
(
math
.
sqrt
(
target_area
*
aspect_ratio
)))
h
=
int
(
round
(
math
.
sqrt
(
target_area
/
aspect_ratio
)))
if
w
<=
width
and
h
<=
height
:
i
=
random
.
randint
(
0
,
height
-
h
)
j
=
random
.
randint
(
0
,
width
-
w
)
img
=
img
[
i
:
i
+
h
,
j
:
j
+
w
,
:]
return
cv2
.
resize
(
img
,
(
224
,
224
),
0
,
0
,
cv2
.
INTER_LINEAR
)
return
center_crop_resize
(
img
)
def
random_flip
(
img
):
return
img
[:,
::
-
1
,
:]
def
normalize_permute
(
img
):
# transpose and convert to RGB from BGR
img
=
img
.
astype
(
np
.
float32
).
transpose
((
2
,
0
,
1
))[::
-
1
,
...]
mean
=
np
.
array
([
123.675
,
116.28
,
103.53
],
dtype
=
np
.
float32
)
std
=
np
.
array
([
58.395
,
57.120
,
57.375
],
dtype
=
np
.
float32
)
invstd
=
1.
/
std
for
v
,
m
,
s
in
zip
(
img
,
mean
,
invstd
):
v
.
__isub__
(
m
).
__imul__
(
s
)
return
img
def
compose
(
functions
):
def
process
(
sample
):
img
,
label
=
sample
for
fn
in
functions
:
img
=
fn
(
img
)
return
img
,
label
return
process
def
image_folder
(
path
,
shuffle
=
False
):
valid_ext
=
(
'.jpg'
,
'.jpeg'
,
'.png'
,
'.ppm'
,
'.bmp'
,
'.webp'
)
classes
=
[
d
for
d
in
os
.
listdir
(
path
)
if
os
.
path
.
isdir
(
os
.
path
.
join
(
path
,
d
))]
classes
.
sort
()
class_map
=
{
cls
:
idx
for
idx
,
cls
in
enumerate
(
classes
)}
samples
=
[]
for
dir
in
sorted
(
class_map
.
keys
()):
d
=
os
.
path
.
join
(
path
,
dir
)
for
root
,
_
,
fnames
in
sorted
(
os
.
walk
(
d
)):
for
fname
in
sorted
(
fnames
):
p
=
os
.
path
.
join
(
root
,
fname
)
if
os
.
path
.
splitext
(
p
)[
1
].
lower
()
in
valid_ext
:
samples
.
append
((
p
,
class_map
[
dir
]))
def
iterator
():
if
shuffle
:
random
.
shuffle
(
samples
)
for
s
in
samples
:
yield
s
return
iterator
def
run
(
model
,
loader
,
mode
=
'train'
):
total_loss
=
0.
total_acc1
=
0.
total_acc5
=
0.
total_time
=
0.
start
=
time
.
time
()
device_ids
=
list
(
range
(
FLAGS
.
num_devices
))
start
=
time
.
time
()
for
idx
,
batch
in
enumerate
(
loader
()):
outputs
,
losses
=
getattr
(
model
,
mode
)(
batch
[
0
],
batch
[
1
],
device
=
'gpu'
,
device_ids
=
device_ids
)
top1
,
top5
=
accuracy
(
outputs
[
0
],
batch
[
1
],
topk
=
(
1
,
5
))
total_loss
+=
np
.
sum
(
losses
)
total_acc1
+=
top1
total_acc5
+=
top5
if
idx
>
1
:
# skip first two steps
total_time
+=
time
.
time
()
-
start
if
idx
%
10
==
0
:
print
((
"{:04d} loss: {:0.3f} top1: {:0.3f}% top5: {:0.3f}% "
"time: {:0.3f}"
).
format
(
idx
,
total_loss
/
(
idx
+
1
),
total_acc1
/
(
idx
+
1
),
total_acc5
/
(
idx
+
1
),
total_time
/
max
(
1
,
(
idx
-
1
))))
start
=
time
.
time
()
def
main
():
@
contextlib
.
contextmanager
def
null_guard
():
yield
epoch
=
FLAGS
.
epoch
batch_size
=
FLAGS
.
batch_size
guard
=
fluid
.
dygraph
.
guard
()
if
FLAGS
.
dynamic
else
null_guard
()
train_dir
=
os
.
path
.
join
(
FLAGS
.
data
,
'train'
)
val_dir
=
os
.
path
.
join
(
FLAGS
.
data
,
'val'
)
train_loader
=
fluid
.
io
.
xmap_readers
(
lambda
batch
:
(
np
.
array
([
b
[
0
]
for
b
in
batch
]),
np
.
array
([
b
[
1
]
for
b
in
batch
]).
reshape
(
-
1
,
1
)),
paddle
.
batch
(
fluid
.
io
.
xmap_readers
(
compose
([
cv2
.
imread
,
random_crop_resize
,
random_flip
,
normalize_permute
]),
image_folder
(
train_dir
,
shuffle
=
True
),
process_num
=
8
,
buffer_size
=
4
*
batch_size
),
batch_size
=
batch_size
,
drop_last
=
True
),
process_num
=
2
,
buffer_size
=
4
)
val_loader
=
fluid
.
io
.
xmap_readers
(
lambda
batch
:
(
np
.
array
([
b
[
0
]
for
b
in
batch
]),
np
.
array
([
b
[
1
]
for
b
in
batch
]).
reshape
(
-
1
,
1
)),
paddle
.
batch
(
fluid
.
io
.
xmap_readers
(
compose
([
cv2
.
imread
,
center_crop_resize
,
normalize_permute
]),
image_folder
(
val_dir
),
process_num
=
8
,
buffer_size
=
4
*
batch_size
),
batch_size
=
batch_size
),
process_num
=
2
,
buffer_size
=
4
)
if
not
os
.
path
.
exists
(
'resnet_checkpoints'
):
os
.
mkdir
(
'resnet_checkpoints'
)
with
guard
:
model
=
ResNet
()
optim
=
make_optimizer
(
parameter_list
=
model
.
parameters
())
model
.
prepare
(
optim
,
CrossEntropy
())
if
FLAGS
.
resume
is
not
None
:
model
.
load
(
FLAGS
.
resume
)
for
e
in
range
(
epoch
):
print
(
"======== train epoch {} ========"
.
format
(
e
))
run
(
model
,
train_loader
)
model
.
save
(
'resnet_checkpoints/{:02d}'
.
format
(
e
))
print
(
"======== eval epoch {} ========"
.
format
(
e
))
run
(
model
,
val_loader
,
mode
=
'eval'
)
if
__name__
==
'__main__'
:
parser
=
argparse
.
ArgumentParser
(
"Resnet Training on ImageNet"
)
parser
.
add_argument
(
'data'
,
metavar
=
'DIR'
,
help
=
'path to dataset '
'(should have subdirectories named "train" and "val"'
)
parser
.
add_argument
(
"-d"
,
"--dynamic"
,
action
=
'store_true'
,
help
=
"enable dygraph mode"
)
parser
.
add_argument
(
"-e"
,
"--epoch"
,
default
=
90
,
type
=
int
,
help
=
"number of epoch"
)
parser
.
add_argument
(
'--lr'
,
'--learning-rate'
,
default
=
0.1
,
type
=
float
,
metavar
=
'LR'
,
help
=
'initial learning rate'
)
parser
.
add_argument
(
"-b"
,
"--batch_size"
,
default
=
256
,
type
=
int
,
help
=
"batch size"
)
parser
.
add_argument
(
"-n"
,
"--num_devices"
,
default
=
4
,
type
=
int
,
help
=
"number of devices"
)
parser
.
add_argument
(
"-r"
,
"--resume"
,
default
=
None
,
type
=
str
,
help
=
"checkpoint path to resume"
)
FLAGS
=
parser
.
parse_args
()
assert
FLAGS
.
data
,
"error: must provide data path"
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录