Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
hapi
提交
c138701d
H
hapi
项目概览
PaddlePaddle
/
hapi
通知
11
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
4
列表
看板
标记
里程碑
合并请求
7
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
H
hapi
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
4
Issue
4
列表
看板
标记
里程碑
合并请求
7
合并请求
7
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c138701d
编写于
6月 03, 2020
作者:
G
guosheng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add hapi/simnet_model
上级
4f3aebce
变更
12
显示空白变更内容
内联
并排
Showing
12 changed file
with
376 addition
and
190 deletion
+376
-190
examples/similarity_net/README.md
examples/similarity_net/README.md
+2
-12
examples/similarity_net/nets/bow.py
examples/similarity_net/nets/bow.py
+7
-21
examples/similarity_net/nets/cnn.py
examples/similarity_net/nets/cnn.py
+28
-35
examples/similarity_net/nets/gru.py
examples/similarity_net/nets/gru.py
+103
-0
examples/similarity_net/nets/losses/hinge_loss.py
examples/similarity_net/nets/losses/hinge_loss.py
+3
-3
examples/similarity_net/nets/losses/log_loss.py
examples/similarity_net/nets/losses/log_loss.py
+1
-1
examples/similarity_net/nets/losses/softmax_cross_entropy_loss.py
.../similarity_net/nets/losses/softmax_cross_entropy_loss.py
+18
-8
examples/similarity_net/nets/lstm.py
examples/similarity_net/nets/lstm.py
+119
-0
examples/similarity_net/reader.py
examples/similarity_net/reader.py
+2
-2
examples/similarity_net/run.sh
examples/similarity_net/run.sh
+6
-7
examples/similarity_net/run_classifier.py
examples/similarity_net/run_classifier.py
+84
-99
examples/similarity_net/utils.py
examples/similarity_net/utils.py
+3
-2
未找到文件。
examples/similarity_net/README.md
浏览文件 @
c138701d
...
...
@@ -3,16 +3,6 @@
### 任务说明
短文本语义匹配(SimilarityNet, SimNet)是一个计算短文本相似度的框架,可以根据用户输入的两个文本,计算出相似度得分。SimNet框架在百度各产品上广泛应用,主要包括BOW、CNN、RNN、MMDNN等核心网络结构形式,提供语义相似度计算训练和预测框架,适用于信息检索、新闻推荐、智能客服等多个应用场景,帮助企业解决语义匹配问题。
### 效果说明
基于百度海量搜索数据,我们训练了一个SimNet-BOW-Pairwise语义匹配模型,在一些真实的FAQ问答场景中,该模型效果比基于字面的相似度方法AUC提升5%以上,我们基于百度自建测试集(包含聊天、客服等数据集)和进行评测,效果如下表所示。
| 模型 | 百度知道 | ECOM |QQSIM | UNICOM |
|:-----------:|:-------------:|:-------------:|:-------------:|:-------------:|
| | AUC | AUC | AUC|正逆序比|
|BOW_Pairwise|0.6815|0.7331|0.7638|1.5565|
#### 测试集说明
| 数据集 | 来源 | 垂类 |
|:-----------:|:-------------:|:-------------:|
...
...
@@ -29,9 +19,9 @@
#### 安装代码
克隆工具集代码库到本地
```
shell
git clone https://github.com/PaddlePaddle/
models
.git
git clone https://github.com/PaddlePaddle/
hapi
.git
cd
models/dygraph
/similarity_net
cd
hapi/examples
/similarity_net
```
#### 数据准备
下载经过预处理的数据,运行命令后,data目录下会存在训练集数据示例、测试集数据示例,以及对应词索引字典(term2id.dict)。
...
...
examples/similarity_net/nets/bow.py
浏览文件 @
c138701d
...
...
@@ -14,6 +14,7 @@
"""
bow class
"""
import
numpy
as
np
import
paddle.fluid
as
fluid
from
paddle.fluid.dygraph
import
Linear
,
Layer
,
Embedding
from
paddle.incubate.hapi.model
import
Model
...
...
@@ -25,11 +26,10 @@ class BOWEncoder(Layer):
simple BOWEncoder for simnet
"""
def
__init__
(
self
,
dict_size
,
bow_dim
,
seq_len
,
emb_dim
,
padding_idx
):
def
__init__
(
self
,
dict_size
,
bow_dim
,
emb_dim
,
padding_idx
):
super
(
BOWEncoder
,
self
).
__init__
()
self
.
dict_size
=
dict_size
self
.
bow_dim
=
bow_dim
self
.
seq_len
=
seq_len
self
.
emb_dim
=
emb_dim
self
.
padding_idx
=
padding_idx
self
.
emb_layer
=
Embedding
(
...
...
@@ -41,28 +41,20 @@ class BOWEncoder(Layer):
def
forward
(
self
,
input
):
emb
=
self
.
emb_layer
(
input
)
emb_reshape
=
fluid
.
layers
.
reshape
(
emb
,
shape
=
[
-
1
,
self
.
seq_len
,
self
.
bow_dim
])
bow_emb
=
fluid
.
layers
.
reduce_sum
(
emb_reshape
,
dim
=
1
)
bow_emb
=
fluid
.
layers
.
reduce_sum
(
emb
,
dim
=
1
)
return
bow_emb
class
Pair_BOWModel
(
Model
):
"""
classify model
"""
def
__init__
(
self
,
conf_dict
):
super
(
Pair_BOWModel
,
self
).
__init__
()
self
.
dict_size
=
conf_dict
[
"dict_size"
]
self
.
task_mode
=
conf_dict
[
"task_mode"
]
self
.
emb_dim
=
conf_dict
[
"net"
][
"emb_dim"
]
self
.
bow_dim
=
conf_dict
[
"net"
][
"bow_dim"
]
self
.
seq_len
=
conf_dict
[
"seq_len"
]
self
.
padding_idx
=
None
self
.
emb_layer
=
BOWEncoder
(
self
.
dict_size
,
self
.
bow_dim
,
self
.
seq_len
,
self
.
emb_dim
,
self
.
padding_idx
)
self
.
emb_layer
=
BOWEncoder
(
self
.
dict_size
,
self
.
bow_dim
,
self
.
emb_dim
,
self
.
padding_idx
)
self
.
bow_layer
=
Linear
(
input_dim
=
self
.
bow_dim
,
output_dim
=
self
.
bow_dim
)
...
...
@@ -83,21 +75,15 @@ class Pair_BOWModel(Model):
class
Point_BOWModel
(
Model
):
"""
classify model
"""
def
__init__
(
self
,
conf_dict
):
super
(
Point_BOWModel
,
self
).
__init__
()
self
.
dict_size
=
conf_dict
[
"dict_size"
]
self
.
task_mode
=
conf_dict
[
"task_mode"
]
self
.
emb_dim
=
conf_dict
[
"net"
][
"emb_dim"
]
self
.
bow_dim
=
conf_dict
[
"net"
][
"bow_dim"
]
self
.
seq_len
=
conf_dict
[
"seq_len"
]
self
.
padding_idx
=
None
self
.
emb_layer
=
BOWEncoder
(
self
.
dict_size
,
self
.
bow_dim
,
self
.
seq_len
,
self
.
emb_dim
,
self
.
padding_idx
)
self
.
emb_layer
=
BOWEncoder
(
self
.
dict_size
,
self
.
bow_dim
,
self
.
emb_dim
,
self
.
padding_idx
)
self
.
bow_layer_po
=
Linear
(
input_dim
=
self
.
bow_dim
*
2
,
output_dim
=
self
.
bow_dim
)
self
.
softmax_layer
=
Linear
(
...
...
examples/similarity_net/nets/cnn.py
浏览文件 @
c138701d
...
...
@@ -15,27 +15,27 @@
cnn class
"""
import
paddle.fluid
as
fluid
from
paddle.fluid.dygraph
import
Linear
,
Layer
,
Conv2D
,
Pool2D
from
paddle.fluid.dygraph
import
Linear
,
Layer
,
Conv2D
,
Pool2D
,
Embedding
from
paddle.incubate.hapi.model
import
Model
from
paddle.incubate.hapi.text.text
import
CNNEncoder
class
Pair_CNNModel
(
Model
):
"""
classify model
"""
def
__init__
(
self
,
conf_dict
):
super
(
Pair_CNNModel
,
self
).
__init__
()
self
.
dict_size
=
conf_dict
[
"dict_size"
]
self
.
task_mode
=
conf_dict
[
"task_mode"
]
self
.
emb_dim
=
conf_dict
[
"net"
][
"emb_dim"
]
self
.
filter_size
=
conf_dict
[
"net"
][
"filter_size"
]
self
.
num_filters
=
conf_dict
[
"net"
][
"num_filters"
]
self
.
hidden_dim
=
conf_dict
[
"net"
][
"hidden_dim"
]
self
.
seq_len
=
conf_dict
[
"seq_len"
]
self
.
padding_idx
=
None
#layers
self
.
emb_layer
=
Embedding
(
size
=
[
self
.
dict_size
,
self
.
emb_dim
],
is_sparse
=
True
,
padding_idx
=
self
.
padding_idx
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'emb'
,
initializer
=
fluid
.
initializer
.
Xavier
()))
self
.
encoder_layer
=
CNNEncoder
(
num_channels
=
1
,
num_filters
=
self
.
num_filters
,
...
...
@@ -44,24 +44,18 @@ class Pair_CNNModel(Model):
layer_num
=
1
,
act
=
'relu'
)
self
.
fc_layer
=
Linear
(
input_dim
=
self
.
num_filters
*
self
.
seq_len
,
output_dim
=
self
.
hidden_dim
)
self
.
fc_layer_po
=
Linear
(
input_dim
=
self
.
num_filters
*
self
.
seq_len
*
2
,
output_dim
=
self
.
hidden_dim
)
self
.
softmax_layer
=
Linear
(
input_dim
=
self
.
hidden_dim
,
output_dim
=
2
,
act
=
'softmax'
)
input_dim
=
self
.
num_filters
,
output_dim
=
self
.
hidden_dim
)
def
forward
(
self
,
left
,
pos_right
,
neg_right
):
left
=
fluid
.
layers
.
reshape
(
left
,
shape
=
[
-
1
,
self
.
seq_len
,
self
.
hidden_dim
])
pos_right
=
fluid
.
layers
.
reshape
(
pos_right
,
shape
=
[
-
1
,
self
.
seq_len
,
self
.
hidden_dim
])
neg_right
=
fluid
.
layers
.
reshape
(
neg_right
,
shape
=
[
-
1
,
self
.
seq_len
,
self
.
hidden_dim
])
left
=
self
.
emb_layer
(
left
)
pos_right
=
self
.
emb_layer
(
pos_right
)
neg_right
=
self
.
emb_layer
(
neg_right
)
left_cnn
=
self
.
encoder_layer
(
left
)
left_cnn
=
fluid
.
layers
.
transpose
(
left_cnn
,
perm
=
[
0
,
2
,
1
])
pos_right_cnn
=
self
.
encoder_layer
(
pos_right
)
pos_right_cnn
=
fluid
.
layers
.
transpose
(
pos_right_cnn
,
perm
=
[
0
,
2
,
1
])
neg_right_cnn
=
self
.
encoder_layer
(
neg_right
)
neg_right_cnn
=
fluid
.
layers
.
transpose
(
neg_right_cnn
,
perm
=
[
0
,
2
,
1
])
left_fc
=
self
.
fc_layer
(
left_cnn
)
pos_right_fc
=
self
.
fc_layer
(
pos_right_cnn
)
neg_right_fc
=
self
.
fc_layer
(
neg_right_cnn
)
...
...
@@ -71,10 +65,6 @@ class Pair_CNNModel(Model):
class
Point_CNNModel
(
Model
):
"""
classify model
"""
def
__init__
(
self
,
conf_dict
):
super
(
Point_CNNModel
,
self
).
__init__
()
self
.
dict_size
=
conf_dict
[
"dict_size"
]
...
...
@@ -85,7 +75,13 @@ class Point_CNNModel(Model):
self
.
hidden_dim
=
conf_dict
[
"net"
][
"hidden_dim"
]
self
.
seq_len
=
conf_dict
[
"seq_len"
]
self
.
padding_idx
=
None
#layers
self
.
emb_layer
=
Embedding
(
size
=
[
self
.
dict_size
,
self
.
emb_dim
],
is_sparse
=
True
,
padding_idx
=
self
.
padding_idx
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'emb'
,
initializer
=
fluid
.
initializer
.
Xavier
()))
self
.
encoder_layer
=
CNNEncoder
(
num_channels
=
1
,
num_filters
=
self
.
num_filters
,
...
...
@@ -93,22 +89,19 @@ class Point_CNNModel(Model):
pool_size
=
1
,
layer_num
=
1
,
act
=
'relu'
)
self
.
fc_layer
=
Linear
(
input_dim
=
self
.
num_filters
*
self
.
seq_len
,
output_dim
=
self
.
hidden_dim
)
self
.
fc_layer_po
=
Linear
(
input_dim
=
self
.
num_filters
*
self
.
seq_len
*
2
,
output_dim
=
self
.
hidden_dim
)
input_dim
=
self
.
num_filters
*
2
,
output_dim
=
self
.
hidden_dim
)
self
.
softmax_layer
=
Linear
(
input_dim
=
self
.
hidden_dim
,
output_dim
=
2
,
act
=
'softmax'
)
def
forward
(
self
,
left
,
right
):
left
=
fluid
.
layers
.
reshape
(
left
,
shape
=
[
-
1
,
self
.
seq_len
,
self
.
hidden_dim
])
right
=
fluid
.
layers
.
reshape
(
right
,
shape
=
[
-
1
,
self
.
seq_len
,
self
.
hidden_dim
])
left
=
self
.
emb_layer
(
left
)
right
=
self
.
emb_layer
(
right
)
left_cnn
=
self
.
encoder_layer
(
left
)
left_cnn
=
fluid
.
layers
.
transpose
(
left_cnn
,
perm
=
[
0
,
2
,
1
])
right_cnn
=
self
.
encoder_layer
(
right
)
right_cnn
=
fluid
.
layers
.
transpose
(
right_cnn
,
perm
=
[
0
,
2
,
1
])
concat
=
fluid
.
layers
.
concat
([
left_cnn
,
right_cnn
],
axis
=
1
)
concat_fc
=
self
.
fc_layer_po
(
concat
)
pred
=
self
.
softmax_layer
(
concat_fc
)
...
...
examples/similarity_net/nets/gru.py
0 → 100644
浏览文件 @
c138701d
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
gru class
"""
import
numpy
as
np
from
paddle.fluid.dygraph
import
Layer
,
to_variable
,
Embedding
,
Linear
,
GRUUnit
import
paddle.fluid
as
fluid
from
paddle.incubate.hapi.model
import
Model
from
paddle.incubate.hapi.text.text
import
RNN
,
BasicGRUCell
class
GRUEncoder
(
Layer
):
def
__init__
(
self
,
dict_size
,
emb_dim
,
gru_dim
,
hidden_dim
,
padding_idx
):
super
(
GRUEncoder
,
self
).
__init__
()
self
.
dict_size
=
dict_size
self
.
emb_dim
=
emb_dim
self
.
gru_dim
=
gru_dim
self
.
hidden_dim
=
hidden_dim
self
.
padding_idx
=
padding_idx
self
.
emb_layer
=
Embedding
(
size
=
[
self
.
dict_size
,
self
.
emb_dim
],
is_sparse
=
True
,
padding_idx
=
self
.
padding_idx
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'emb'
,
initializer
=
fluid
.
initializer
.
Xavier
()))
cell
=
BasicGRUCell
(
input_size
=
self
.
gru_dim
*
3
,
hidden_size
=
self
.
hidden_dim
)
self
.
gru_layer
=
RNN
(
cell
=
cell
)
self
.
proj_layer
=
Linear
(
input_dim
=
self
.
hidden_dim
,
output_dim
=
self
.
gru_dim
*
3
)
def
forward
(
self
,
input
):
emb
=
self
.
emb_layer
(
input
)
emb_proj
=
self
.
proj_layer
(
emb
)
gru
,
_
=
self
.
gru_layer
(
emb_proj
)
gru
=
fluid
.
layers
.
reduce_max
(
gru
,
dim
=
1
)
gru
=
fluid
.
layers
.
tanh
(
gru
)
return
gru
class
Pair_GRUModel
(
Model
):
def
__init__
(
self
,
conf_dict
):
super
(
Pair_GRUModel
,
self
).
__init__
()
self
.
dict_size
=
conf_dict
[
"dict_size"
]
self
.
task_mode
=
conf_dict
[
"task_mode"
]
self
.
emb_dim
=
conf_dict
[
"net"
][
"emb_dim"
]
self
.
gru_dim
=
conf_dict
[
"net"
][
"gru_dim"
]
self
.
hidden_dim
=
conf_dict
[
"net"
][
"hidden_dim"
]
self
.
padding_idx
=
None
self
.
emb_layer
=
GRUEncoder
(
self
.
dict_size
,
self
.
emb_dim
,
self
.
gru_dim
,
self
.
hidden_dim
,
self
.
padding_idx
)
self
.
fc_layer
=
Linear
(
input_dim
=
self
.
hidden_dim
,
output_dim
=
self
.
hidden_dim
)
def
forward
(
self
,
left
,
pos_right
,
neg_right
):
left_emb
=
self
.
emb_layer
(
left
)
pos_right_emb
=
self
.
emb_layer
(
pos_right
)
neg_right_emb
=
self
.
emb_layer
(
neg_right
)
left_fc
=
self
.
fc_layer
(
left_emb
)
pos_right_fc
=
self
.
fc_layer
(
pos_right_emb
)
neg_right_fc
=
self
.
fc_layer
(
neg_right_emb
)
pos_pred
=
fluid
.
layers
.
cos_sim
(
left_fc
,
pos_right_fc
)
neg_pred
=
fluid
.
layers
.
cos_sim
(
left_fc
,
neg_right_fc
)
return
pos_pred
,
neg_pred
class
Point_GRUModel
(
Model
):
def
__init__
(
self
,
conf_dict
):
super
(
Point_GRUModel
,
self
).
__init__
()
self
.
dict_size
=
conf_dict
[
"dict_size"
]
self
.
task_mode
=
conf_dict
[
"task_mode"
]
self
.
emb_dim
=
conf_dict
[
"net"
][
"emb_dim"
]
self
.
gru_dim
=
conf_dict
[
"net"
][
"gru_dim"
]
self
.
hidden_dim
=
conf_dict
[
"net"
][
"hidden_dim"
]
self
.
padding_idx
=
None
self
.
emb_layer
=
GRUEncoder
(
self
.
dict_size
,
self
.
emb_dim
,
self
.
gru_dim
,
self
.
hidden_dim
,
self
.
padding_idx
)
self
.
fc_layer_fo
=
Linear
(
input_dim
=
self
.
hidden_dim
*
2
,
output_dim
=
self
.
hidden_dim
)
self
.
softmax_layer
=
Linear
(
input_dim
=
self
.
hidden_dim
,
output_dim
=
2
,
act
=
'softmax'
)
def
forward
(
self
,
left
,
right
):
left_emb
=
self
.
emb_layer
(
left
)
right_emb
=
self
.
emb_layer
(
right
)
concat
=
fluid
.
layers
.
concat
([
left_emb
,
right_emb
],
axis
=
1
)
concat_fc
=
self
.
fc_layer_fo
(
concat
)
pred
=
self
.
softmax_layer
(
concat_fc
)
return
pred
examples/similarity_net/nets/losses/hinge_loss.py
浏览文件 @
c138701d
...
...
@@ -18,7 +18,7 @@ hinge loss
import
sys
sys
.
path
.
append
(
"../"
)
import
paddle.fluid
as
fluid
from
paddle.incubate.hapi.
model
import
Loss
from
paddle.incubate.hapi.
loss
import
Loss
class
HingeLoss
(
Loss
):
...
...
@@ -34,6 +34,6 @@ class HingeLoss(Loss):
neg
,
neg
.
shape
,
"float32"
,
self
.
margin
)
sub
=
fluid
.
layers
.
elementwise_sub
(
neg
,
pos
)
add
=
fluid
.
layers
.
elementwise_add
(
sub
,
loss_margin
)
loss_
max
=
fluid
.
layers
.
elementwise_max
(
loss
,
add
)
loss_last
=
fluid
.
layers
.
reduce_mean
(
loss_
max
)
max
=
fluid
.
layers
.
elementwise_max
(
loss
,
add
)
loss_last
=
fluid
.
layers
.
reduce_mean
(
max
)
return
loss_last
examples/similarity_net/nets/losses/log_loss.py
浏览文件 @
c138701d
...
...
@@ -18,7 +18,7 @@ log loss
import
sys
sys
.
path
.
append
(
"../"
)
import
paddle.fluid
as
fluid
from
paddle.incubate.hapi.
model
import
Loss
from
paddle.incubate.hapi.
loss
import
Loss
class
LogLoss
(
Loss
):
...
...
examples/similarity_net/nets/losses/softmax_cross_entropy_loss.py
浏览文件 @
c138701d
...
...
@@ -18,14 +18,24 @@ softmax loss
import
sys
sys
.
path
.
append
(
"../"
)
import
paddle.fluid
as
fluid
from
paddle.incubate.hapi.model
import
Loss
from
hapi.model
import
Loss
'''
class SoftmaxCrossEntropyLoss(Loss):
def __init__(self,conf_dict):
super(SoftmaxCrossEntropyLoss,self).__init__()
def forward(self,input,label):
cost=fluid.layers.cross_entropy(input=input,label=label)
avg_cost=fluid.layers.reduce_mean(cost)
return avg_cost
'''
class
SoftmxCrossEntropyLoss
(
Loss
):
def
__init__
(
self
,
conf_dict
):
super
(
SoftmxCrossEntropyLoss
,
self
).
__init__
()
def
forward
(
self
,
input
,
label
):
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
input
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
reduce_mean
(
cost
)
return
avg_cost
class
SoftmaxCrossEntropyLoss
(
Loss
):
def
__init__
(
self
,
conf_dict
,
average
=
True
):
super
(
SoftmaxCrossEntropyLoss
,
self
).
__init__
()
def
forward
(
self
,
outputs
,
labels
):
return
[
fluid
.
layers
.
cross_entropy
(
o
,
l
)
for
o
,
l
in
zip
(
outputs
,
labels
)
]
examples/similarity_net/nets/lstm.py
0 → 100644
浏览文件 @
c138701d
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
gru class
"""
import
numpy
as
np
from
paddle.fluid.dygraph
import
Layer
,
Embedding
,
Linear
import
paddle.fluid
as
fluid
from
paddle.incubate.hapi.model
import
Model
from
paddle.incubate.hapi.text.text
import
BasicLSTMCell
,
RNN
class
LSTMEncoder
(
Layer
):
def
__init__
(
self
,
dict_size
,
emb_dim
,
lstm_dim
,
hidden_dim
,
padding_idx
):
super
(
LSTMEncoder
,
self
).
__init__
()
self
.
dict_size
=
dict_size
self
.
emb_dim
=
emb_dim
self
.
lstm_dim
=
lstm_dim
self
.
hidden_dim
=
hidden_dim
self
.
is_reverse
=
False
self
.
padding_idx
=
padding_idx
self
.
emb_layer
=
Embedding
(
size
=
[
self
.
dict_size
,
self
.
emb_dim
],
is_sparse
=
True
,
padding_idx
=
self
.
padding_idx
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'emb'
,
initializer
=
fluid
.
initializer
.
Xavier
()))
self
.
lstm_cell
=
BasicLSTMCell
(
input_size
=
self
.
lstm_dim
*
4
,
hidden_size
=
self
.
lstm_dim
)
self
.
lstm_layer
=
RNN
(
cell
=
self
.
lstm_cell
,
time_major
=
True
,
is_reverse
=
self
.
is_reverse
)
self
.
proj_layer
=
Linear
(
input_dim
=
self
.
emb_dim
,
output_dim
=
self
.
lstm_dim
*
4
)
def
forward
(
self
,
input
):
emb
=
self
.
emb_layer
(
input
)
emb_proj
=
self
.
proj_layer
(
emb
)
emb_lstm
,
_
=
self
.
lstm_layer
(
emb_proj
)
emb_reduce
=
fluid
.
layers
.
reduce_max
(
emb_lstm
,
dim
=
1
)
emb_out
=
fluid
.
layers
.
tanh
(
emb_reduce
)
return
emb_out
class
Pair_LSTMModel
(
Model
):
def
__init__
(
self
,
conf_dict
):
super
(
Pair_LSTMModel
,
self
).
__init__
()
self
.
dict_size
=
conf_dict
[
"dict_size"
]
self
.
emb_dim
=
conf_dict
[
"net"
][
"emb_dim"
]
self
.
lstm_dim
=
conf_dict
[
"net"
][
"lstm_dim"
]
self
.
hidden_dim
=
conf_dict
[
"net"
][
"hidden_dim"
]
self
.
padding_idx
=
None
self
.
emb_layer
=
LSTMEncoder
(
self
.
dict_size
,
self
.
emb_dim
,
self
.
lstm_dim
,
self
.
hidden_dim
,
self
.
padding_idx
)
self
.
fc_layer
=
Linear
(
input_dim
=
self
.
hidden_dim
,
output_dim
=
self
.
hidden_dim
)
self
.
fc_layer_po
=
Linear
(
input_dim
=
self
.
hidden_dim
*
2
,
output_dim
=
self
.
hidden_dim
)
self
.
softmax_layer
=
Linear
(
input_dim
=
self
.
hidden_dim
,
output_dim
=
2
,
act
=
'softmax'
)
def
forward
(
self
,
left
,
pos_right
,
neg_right
):
left_emb
=
self
.
emb_layer
(
left
)
pos_right_emb
=
self
.
emb_layer
(
pos_right
)
neg_right_emb
=
self
.
emb_layer
(
neg_right
)
left_fc
=
self
.
fc_layer
(
left_emb
)
pos_right_fc
=
self
.
fc_layer
(
pos_right_emb
)
neg_right_fc
=
self
.
fc_layer
(
neg_right_emb
)
pos_pred
=
fluid
.
layers
.
cos_sim
(
left_fc
,
pos_right_fc
)
neg_pred
=
fluid
.
layers
.
cos_sim
(
left_fc
,
neg_right_fc
)
return
pos_pred
,
neg_pred
class
Point_LSTMModel
(
Model
):
def
__init__
(
self
,
conf_dict
):
super
(
Point_LSTMModel
,
self
).
__init__
()
self
.
dict_size
=
conf_dict
[
"dict_size"
]
self
.
task_mode
=
conf_dict
[
"task_mode"
]
self
.
emb_dim
=
conf_dict
[
"net"
][
"emb_dim"
]
self
.
lstm_dim
=
conf_dict
[
"net"
][
"lstm_dim"
]
self
.
hidden_dim
=
conf_dict
[
"net"
][
"hidden_dim"
]
self
.
padding_idx
=
None
self
.
emb_layer
=
LSTMEncoder
(
self
.
dict_size
,
self
.
emb_dim
,
self
.
lstm_dim
,
self
.
hidden_dim
,
self
.
padding_idx
)
self
.
fc_layer
=
Linear
(
input_dim
=
self
.
hidden_dim
,
output_dim
=
self
.
hidden_dim
)
self
.
fc_layer_po
=
Linear
(
input_dim
=
self
.
hidden_dim
*
2
,
output_dim
=
self
.
hidden_dim
)
self
.
softmax_layer
=
Linear
(
input_dim
=
self
.
hidden_dim
,
output_dim
=
2
,
act
=
'softmax'
)
def
forward
(
self
,
left
,
right
):
left_emb
=
self
.
emb_layer
(
left
)
right_emb
=
self
.
emb_layer
(
right
)
concat
=
fluid
.
layers
.
concat
([
left_emb
,
right_emb
],
axis
=
1
)
concat_fc
=
self
.
fc_layer_po
(
concat
)
pred
=
self
.
softmax_layer
(
concat_fc
)
return
pred
examples/similarity_net/reader.py
浏览文件 @
c138701d
...
...
@@ -184,7 +184,7 @@ class SimNetProcessor(object):
query
=
self
.
padding_text
(
query
)
title
=
self
.
padding_text
(
title
)
l
e
bel
=
int
(
label
)
l
a
bel
=
int
(
label
)
yield
[
query
,
title
,
label
]
else
:
...
...
@@ -246,7 +246,7 @@ class SimNetProcessor(object):
yield
[
query
,
title
]
def
get_infer_
pair
data
(
self
):
def
get_infer_data
(
self
):
"""
get infer data
"""
...
...
examples/similarity_net/run.sh
浏览文件 @
c138701d
...
...
@@ -15,7 +15,7 @@ INFER_RESULT_PATH=./infer_result
TASK_MODE
=
'pairwise'
CONFIG_PATH
=
./config/bow_pairwise.json
INIT_CHECKPOINT
=
./model_files/bow_pairwise/20
0
INIT_CHECKPOINT
=
./model_files/bow_pairwise/20
...
...
@@ -36,9 +36,9 @@ train() {
--config_path
${
CONFIG_PATH
}
\
--vocab_path
${
VOCAB_PATH
}
\
--epoch
40
\
--save_steps
200
0
\
--validation_steps
2
00
\
--compute_accuracy
Fals
e
\
--save_steps
1
0
\
--validation_steps
2
\
--compute_accuracy
Tru
e
\
--lamda
0.958
\
--task_mode
${
TASK_MODE
}
\
--init_checkpoint
""
...
...
@@ -49,14 +49,13 @@ evaluate() {
--task_name
${
TASK_NAME
}
\
--use_cuda
false
\
--do_test
True
\
--verbose_result
True
\
--batch_size
128
\
--test_data_dir
${
TEST_DATA_PATH
}
\
--test_result_path
${
TEST_RESULT_PATH
}
\
--config_path
${
CONFIG_PATH
}
\
--vocab_path
${
VOCAB_PATH
}
\
--task_mode
${
TASK_MODE
}
\
--compute_accuracy
Fals
e
\
--compute_accuracy
Tru
e
\
--lamda
0.958
\
--init_checkpoint
${
INIT_CHECKPOINT
}
}
...
...
examples/similarity_net/run_classifier.py
浏览文件 @
c138701d
...
...
@@ -34,20 +34,16 @@ import config
from
utils
import
load_vocab
,
import_class
,
get_accuracy
,
ArgConfig
,
print_arguments
from
paddle.incubate.hapi.metrics
import
Accuracy
from
paddle.incubate.hapi.model
import
set_device
,
Model
,
Input
,
Loss
,
CrossEntropy
from
paddle.incubate.hapi.model
import
set_device
,
Model
,
Input
from
paddle.incubate.hapi.loss
import
Loss
def
train
(
conf_dict
,
args
):
device
=
set_device
(
"cpu"
)
fluid
.
enable_dygraph
(
device
)
# load auc method
metric
=
fluid
.
metrics
.
Auc
(
name
=
"auc"
)
def
valid_and_test
(
pred_list
,
process
,
mode
):
# define auc method
def
valid_and_test
(
pred_list
,
process
,
mode
):
"""
return auc and acc
"""
metric
=
fluid
.
metrics
.
Auc
(
name
=
"auc"
)
pred_list
=
np
.
vstack
(
pred_list
)
if
mode
==
"test"
:
label_list
=
process
.
get_test_label
()
...
...
@@ -55,18 +51,21 @@ def train(conf_dict, args):
label_list
=
process
.
get_valid_label
()
if
args
.
task_mode
==
"pairwise"
:
pred_list
=
(
pred_list
+
1
)
/
2
pred_list
=
np
.
hstack
(
(
np
.
ones_like
(
pred_list
)
-
pred_list
,
pred_list
))
pred_list
=
np
.
hstack
((
np
.
ones_like
(
pred_list
)
-
pred_list
,
pred_list
))
metric
.
reset
()
metric
.
update
(
pred_list
,
label_list
)
auc
=
metric
.
eval
()
if
args
.
compute_accuracy
:
acc
=
get_accuracy
(
pred_list
,
label_list
,
args
.
task_mode
,
args
.
lamda
)
acc
=
get_accuracy
(
pred_list
,
label_list
,
args
.
task_mode
,
args
.
lamda
)
return
auc
,
acc
else
:
return
auc
def
train
(
conf_dict
,
args
):
device
=
set_device
(
"cpu"
)
fluid
.
enable_dygraph
(
device
)
# loading vocabulary
vocab
=
load_vocab
(
args
.
vocab_path
)
# get vocab size
...
...
@@ -120,9 +119,9 @@ def train(conf_dict, args):
if
args
.
task_mode
==
"pairwise"
:
inputs
=
[
Input
(
[
None
,
1
],
'int64'
,
name
=
'input_left'
),
Input
(
[
None
,
1
],
'int64'
,
name
=
'pos_right'
),
Input
(
[
None
,
1
],
'int64'
,
name
=
'neg_right'
)
[
None
,
args
.
seq_len
],
'int64'
,
name
=
'input_left'
),
Input
(
[
None
,
args
.
seq_len
],
'int64'
,
name
=
'pos_right'
),
Input
(
[
None
,
args
.
seq_len
],
'int64'
,
name
=
'neg_right'
)
]
model
.
prepare
(
...
...
@@ -132,9 +131,11 @@ def train(conf_dict, args):
device
=
device
)
for
left
,
pos_right
,
neg_right
in
train_pyreader
():
input_left
=
fluid
.
layers
.
reshape
(
left
,
shape
=
[
-
1
,
1
])
pos_right
=
fluid
.
layers
.
reshape
(
pos_right
,
shape
=
[
-
1
,
1
])
neg_right
=
fluid
.
layers
.
reshape
(
neg_right
,
shape
=
[
-
1
,
1
])
input_left
=
fluid
.
layers
.
reshape
(
left
,
shape
=
[
-
1
,
args
.
seq_len
])
pos_right
=
fluid
.
layers
.
reshape
(
pos_right
,
shape
=
[
-
1
,
args
.
seq_len
])
neg_right
=
fluid
.
layers
.
reshape
(
neg_right
,
shape
=
[
-
1
,
args
.
seq_len
])
final_loss
=
model
.
train_batch
([
input_left
,
pos_right
,
neg_right
])
print
(
"train_steps: %d, train_loss: %f"
%
...
...
@@ -144,26 +145,29 @@ def train(conf_dict, args):
if
args
.
do_valid
and
global_step
%
args
.
validation_steps
==
0
:
for
left
,
pos_right
,
neg_right
in
valid_pyreader
():
input_left
=
fluid
.
layers
.
reshape
(
left
,
shape
=
[
-
1
,
1
])
pos_right
=
fluid
.
layers
.
reshape
(
pos_right
,
shape
=
[
-
1
,
1
])
neg_right
=
fluid
.
layers
.
reshape
(
neg_right
,
shape
=
[
-
1
,
1
])
input_left
=
fluid
.
layers
.
reshape
(
left
,
shape
=
[
-
1
,
args
.
seq_len
])
pos_right
=
fluid
.
layers
.
reshape
(
pos_right
,
shape
=
[
-
1
,
args
.
seq_len
])
neg_right
=
fluid
.
layers
.
reshape
(
neg_right
,
shape
=
[
-
1
,
args
.
seq_len
])
result
,
_
=
model
.
test_batch
(
[
input_left
,
pos_right
,
neg_right
])
pred_list
+=
list
(
result
)
valid_step
+=
1
pred_list
=
list
(
result
)
valid_step
+=
1
valid_result
=
valid_and_test
(
pred_list
,
simnet_process
,
"valid"
)
if
args
.
compute_accuracy
:
valid_auc
,
valid_acc
=
valid_result
print
(
"valid_steps: %d, valid_auc: %f, valid_acc: %f, valid_loss: %f"
%
(
global
_step
,
valid_auc
,
valid_acc
,
np
.
mean
(
losses
)))
%
(
valid
_step
,
valid_auc
,
valid_acc
,
np
.
mean
(
losses
)))
else
:
valid_auc
=
valid_result
print
(
"valid_steps: %d, valid_auc: %f, valid_loss: %f"
%
(
global
_step
,
valid_auc
,
np
.
mean
(
losses
)))
(
valid
_step
,
valid_auc
,
np
.
mean
(
losses
)))
if
global_step
%
args
.
save_steps
==
0
:
model_save_dir
=
os
.
path
.
join
(
args
.
output_dir
,
...
...
@@ -177,20 +181,21 @@ def train(conf_dict, args):
else
:
inputs
=
[
Input
(
[
None
,
1
],
'int64'
,
name
=
'left'
),
Input
(
[
None
,
1
],
'int64'
,
name
=
'right'
)
[
None
,
args
.
seq_len
],
'int64'
,
name
=
'left'
),
Input
(
[
None
,
args
.
seq_len
],
'int64'
,
name
=
'right'
)
]
label
=
[
Input
([
None
,
1
],
'int64'
,
name
=
'neg_right'
)]
model
.
prepare
(
inputs
=
inputs
,
labels
=
label
,
optimizer
=
optimizer
,
loss_function
=
loss
,
device
=
device
)
for
left
,
right
,
label
in
train_pyreader
():
left
=
fluid
.
layers
.
reshape
(
left
,
shape
=
[
-
1
,
1
])
right
=
fluid
.
layers
.
reshape
(
right
,
shape
=
[
-
1
,
1
])
left
=
fluid
.
layers
.
reshape
(
left
,
shape
=
[
-
1
,
args
.
seq_len
])
right
=
fluid
.
layers
.
reshape
(
right
,
shape
=
[
-
1
,
args
.
seq_len
])
label
=
fluid
.
layers
.
reshape
(
label
,
shape
=
[
-
1
,
1
])
final_loss
=
model
.
train_batch
([
left
,
right
],
[
label
])
...
...
@@ -201,26 +206,27 @@ def train(conf_dict, args):
if
args
.
do_valid
and
global_step
%
args
.
validation_steps
==
0
:
for
left
,
right
,
label
in
valid_pyreader
():
valid_left
=
fluid
.
layers
.
reshape
(
left
,
shape
=
[
-
1
,
1
])
valid_right
=
fluid
.
layers
.
reshape
(
right
,
shape
=
[
-
1
,
1
])
valid_left
=
fluid
.
layers
.
reshape
(
left
,
shape
=
[
-
1
,
args
.
seq_len
])
valid_right
=
fluid
.
layers
.
reshape
(
right
,
shape
=
[
-
1
,
args
.
seq_len
])
valid_label
=
fluid
.
layers
.
reshape
(
label
,
shape
=
[
-
1
,
1
])
result
,
_
=
model
.
test_batch
(
[
valid_left
,
valid_right
,
valid_right
])
result
=
model
.
test_batch
([
valid_left
,
valid_right
])
pred_list
+=
list
(
result
)
valid_step
+=
1
valid_step
+=
1
valid_result
=
valid_and_test
(
pred_list
,
simnet_process
,
"valid"
)
if
args
.
compute_accuracy
:
valid_auc
,
valid_acc
=
valid_result
print
(
"valid_steps: %d, valid_auc: %f, valid_acc: %f, valid_loss: %f"
%
(
global
_step
,
valid_auc
,
valid_acc
,
np
.
mean
(
losses
)))
%
(
valid
_step
,
valid_auc
,
valid_acc
,
np
.
mean
(
losses
)))
else
:
valid_auc
=
valid_result
print
(
"valid_steps: %d, valid_auc: %f, valid_loss: %f"
%
(
global
_step
,
valid_auc
,
np
.
mean
(
losses
)))
(
valid
_step
,
valid_auc
,
np
.
mean
(
losses
)))
if
global_step
%
args
.
save_steps
==
0
:
model_save_dir
=
os
.
path
.
join
(
args
.
output_dir
,
...
...
@@ -236,31 +242,6 @@ def test(conf_dict, args):
device
=
set_device
(
"cpu"
)
fluid
.
enable_dygraph
(
device
)
metric
=
fluid
.
metrics
.
Auc
(
name
=
"auc"
)
def
valid_and_test
(
pred_list
,
process
,
mode
):
"""
return auc and acc
"""
pred_list
=
np
.
vstack
(
pred_list
)
if
mode
==
"test"
:
label_list
=
process
.
get_test_label
()
elif
mode
==
"valid"
:
label_list
=
process
.
get_valid_label
()
if
args
.
task_mode
==
"pairwise"
:
pred_list
=
(
pred_list
+
1
)
/
2
pred_list
=
np
.
hstack
(
(
np
.
ones_like
(
pred_list
)
-
pred_list
,
pred_list
))
metric
.
reset
()
metric
.
update
(
pred_list
,
label_list
)
auc
=
metric
.
eval
()
if
args
.
compute_accuracy
:
acc
=
get_accuracy
(
pred_list
,
label_list
,
args
.
task_mode
,
args
.
lamda
)
return
auc
,
acc
else
:
return
auc
# loading vocabulary
vocab
=
load_vocab
(
args
.
vocab_path
)
# get vocab size
...
...
@@ -286,17 +267,19 @@ def test(conf_dict, args):
if
args
.
task_mode
==
"pairwise"
:
inputs
=
[
Input
(
[
None
,
1
],
'int64'
,
name
=
'input_left'
),
Input
(
[
None
,
1
],
'int64'
,
name
=
'pos_right'
),
Input
(
[
None
,
1
],
'int64'
,
name
=
'pos_right'
)
[
None
,
args
.
seq_len
],
'int64'
,
name
=
'input_left'
),
Input
(
[
None
,
args
.
seq_len
],
'int64'
,
name
=
'pos_right'
),
Input
(
[
None
,
args
.
seq_len
],
'int64'
,
name
=
'pos_right'
)
]
model
.
prepare
(
inputs
=
inputs
,
device
=
device
)
for
left
,
pos_right
,
neg_right
in
test_pyreader
():
input_left
=
fluid
.
layers
.
reshape
(
left
,
shape
=
[
-
1
,
1
])
pos_right
=
fluid
.
layers
.
reshape
(
pos_right
,
shape
=
[
-
1
,
1
])
neg_right
=
fluid
.
layers
.
reshape
(
pos_right
,
shape
=
[
-
1
,
1
])
input_left
=
fluid
.
layers
.
reshape
(
left
,
shape
=
[
-
1
,
args
.
seq_len
])
pos_right
=
fluid
.
layers
.
reshape
(
pos_right
,
shape
=
[
-
1
,
args
.
seq_len
])
neg_right
=
fluid
.
layers
.
reshape
(
pos_right
,
shape
=
[
-
1
,
args
.
seq_len
])
final_pred
,
_
=
model
.
test_batch
(
[
input_left
,
pos_right
,
neg_right
])
...
...
@@ -315,15 +298,15 @@ def test(conf_dict, args):
else
:
inputs
=
[
Input
(
[
None
,
1
],
'int64'
,
name
=
'left'
),
Input
(
[
None
,
1
],
'int64'
,
name
=
'right'
)
[
None
,
args
.
seq_len
],
'int64'
,
name
=
'left'
),
Input
(
[
None
,
args
.
seq_len
],
'int64'
,
name
=
'right'
)
]
model
.
prepare
(
inputs
=
inputs
,
device
=
device
)
for
left
,
right
,
label
in
test_pyreader
():
left
=
fluid
.
layers
.
reshape
(
left
,
shape
=
[
-
1
,
1
])
right
=
fluid
.
layers
.
reshape
(
right
,
shape
=
[
-
1
,
1
])
left
=
fluid
.
layers
.
reshape
(
left
,
shape
=
[
-
1
,
args
.
seq_len
])
right
=
fluid
.
layers
.
reshape
(
right
,
shape
=
[
-
1
,
args
.
seq_len
])
label
=
fluid
.
layers
.
reshape
(
label
,
shape
=
[
-
1
,
1
])
final_pred
=
model
.
test_batch
([
left
,
right
])
...
...
@@ -368,16 +351,19 @@ def infer(conf_dict, args):
if
args
.
task_mode
==
"pairwise"
:
inputs
=
[
Input
(
[
None
,
1
],
'int64'
,
name
=
'input_left'
),
Input
(
[
None
,
1
],
'int64'
,
name
=
'pos_right'
)
[
None
,
args
.
seq_len
],
'int64'
,
name
=
'input_left'
),
Input
(
[
None
,
args
.
seq_len
],
'int64'
,
name
=
'pos_right'
),
Input
(
[
None
,
args
.
seq_len
],
'int64'
,
name
=
'neg_right'
)
]
model
.
prepare
(
inputs
=
inputs
,
device
=
device
)
for
left
,
pos_right
in
infer_pyreader
():
input_left
=
fluid
.
layers
.
reshape
(
left
,
shape
=
[
-
1
,
1
])
pos_right
=
fluid
.
layers
.
reshape
(
pos_right
,
shape
=
[
-
1
,
1
])
neg_right
=
fluid
.
layers
.
reshape
(
pos_right
,
shape
=
[
-
1
,
1
])
input_left
=
fluid
.
layers
.
reshape
(
left
,
shape
=
[
-
1
,
args
.
seq_len
])
pos_right
=
fluid
.
layers
.
reshape
(
pos_right
,
shape
=
[
-
1
,
args
.
seq_len
])
neg_right
=
fluid
.
layers
.
reshape
(
pos_right
,
shape
=
[
-
1
,
args
.
seq_len
])
final_pred
,
_
=
model
.
test_batch
(
[
input_left
,
pos_right
,
neg_right
])
...
...
@@ -388,16 +374,15 @@ def infer(conf_dict, args):
else
:
inputs
=
[
Input
(
[
None
,
1
],
'int64'
,
name
=
'left'
),
Input
(
[
None
,
1
],
'int64'
,
name
=
'right'
)
[
None
,
args
.
seq_len
],
'int64'
,
name
=
'left'
),
Input
(
[
None
,
args
.
seq_len
],
'int64'
,
name
=
'right'
)
]
model
.
prepare
(
inputs
=
inputs
,
device
=
device
)
for
left
,
right
in
infer_pyreader
():
left
=
fluid
.
layers
.
reshape
(
left
,
shape
=
[
-
1
,
1
])
right
=
fluid
.
layers
.
reshape
(
right
,
shape
=
[
-
1
,
1
])
# label = fluid.layers.reshape(label, shape=[-1, 1])
left
=
fluid
.
layers
.
reshape
(
left
,
shape
=
[
-
1
,
args
.
seq_len
])
right
=
fluid
.
layers
.
reshape
(
right
,
shape
=
[
-
1
,
args
.
seq_len
])
final_pred
=
model
.
test_batch
([
left
,
right
])
print
(
final_pred
)
...
...
@@ -405,8 +390,7 @@ def infer(conf_dict, args):
map
(
lambda
item
:
str
((
item
[
0
]
+
1
)
/
2
),
final_pred
))
with
io
.
open
(
args
.
infer_result_path
,
"w"
,
encoding
=
"utf8"
)
as
infer_file
:
for
_data
,
_pred
in
zip
(
simnet_process
.
get_infer_data
(),
int
(
pred_list
)):
for
_data
,
_pred
in
zip
(
simnet_process
.
get_infer_data
(),
pred_list
):
infer_file
.
write
(
_data
+
"
\t
"
+
_pred
+
"
\n
"
)
...
...
@@ -423,4 +407,5 @@ if __name__ == '__main__':
elif
args
.
do_infer
:
infer
(
conf_dict
,
args
)
else
:
raise
ValueError
(
"one of do_train and do_infer must be True"
)
raise
ValueError
(
"one of do_train and do_test and do_infer must be True"
)
examples/similarity_net/utils.py
浏览文件 @
c138701d
...
...
@@ -27,7 +27,7 @@ import io
import
pickle
import
warnings
from
functools
import
partial
from
hapi.configure
import
ArgumentGroup
,
str2bool
from
paddle.incubate.
hapi.configure
import
ArgumentGroup
,
str2bool
"""
******functions for file processing******
"""
...
...
@@ -183,7 +183,8 @@ class ArgConfig(object):
run_type_g
.
add_arg
(
"do_train"
,
bool
,
False
,
"Whether to perform training."
)
run_type_g
.
add_arg
(
"do_valid"
,
bool
,
False
,
"Whether to perform dev."
)
#run_type_g.add_arg("do_test", bool, False, "Whether to perform testing.")
run_type_g
.
add_arg
(
"do_test"
,
bool
,
False
,
"Whether to perform testing."
)
run_type_g
.
add_arg
(
"do_infer"
,
bool
,
False
,
"Whether to perform inference."
)
run_type_g
.
add_arg
(
"compute_accuracy"
,
bool
,
False
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录