提交 b3a1ddf8 编写于 作者: G guosheng

Add CNN related apis in text.py

上级 48d8a390
......@@ -711,5 +711,39 @@ class TestBiGRU(ModuleApiTest):
self.check_output()
class TestCNNEncoder(ModuleApiTest):
def setUp(self):
shape = (2, 32, 8) # [N, C, H]
self.inputs = [np.random.random(shape).astype("float32")]
self.outputs = None
self.attrs = {"num_channels": 32, "num_filters": 64, "num_layers": 2}
self.param_states = {}
@staticmethod
def model_init(self, num_channels, num_filters, num_layers):
self.cnn_encoder = CNNEncoder(
num_layers=2,
num_channels=num_channels,
num_filters=num_filters,
filter_size=[2, 3],
pool_size=[7, 6])
@staticmethod
def model_forward(self, inputs):
return self.cnn_encoder(inputs)
def make_inputs(self):
inputs = [
Input(
[None, self.inputs[-1].shape[1], None],
"float32",
name="input"),
]
return inputs
def test_check_output_merge0(self):
self.check_output()
if __name__ == '__main__':
unittest.main()
......@@ -16,15 +16,27 @@ from hapi.text.text import RNNCell as RNNCell
from hapi.text.text import BasicLSTMCell as BasicLSTMCell
from hapi.text.text import BasicGRUCell as BasicGRUCell
from hapi.text.text import RNN as RNN
from hapi.text.text import StackedLSTMCell as StackedLSTMCell
from hapi.text.text import LSTM as LSTM
from hapi.text.text import BidirectionalLSTM as BidirectionalLSTM
from hapi.text.text import StackedGRUCell as StackedGRUCell
from hapi.text.text import GRU as GRU
from hapi.text.text import BidirectionalGRU as BidirectionalGRU
from hapi.text.text import DynamicDecode as DynamicDecode
from hapi.text.text import BeamSearchDecoder as BeamSearchDecoder
from hapi.text.text import Conv1dPoolLayer as Conv1dPoolLayer
from hapi.text.text import CNNEncoder as CNNEncoder
from hapi.text.text import MultiHeadAttention as MultiHeadAttention
from hapi.text.text import FFN as FFN
from hapi.text.text import TransformerEncoderLayer as TransformerEncoderLayer
from hapi.text.text import TransformerDecoderLayer as TransformerDecoderLayer
from hapi.text.text import TransformerEncoder as TransformerEncoder
from hapi.text.text import TransformerDecoder as TransformerDecoder
from hapi.text.text import TransformerCell as TransformerCell
from hapi.text.text import TransformerBeamSearchDecoder as TransformerBeamSearchDecoder
from hapi.text.text import GRUCell as GRUCell
from hapi.text.text import GRUEncoderCell as GRUEncoderCell
from hapi.text.text import BiGRU as BiGRU
......
......@@ -37,7 +37,7 @@ import paddle
import paddle.fluid as fluid
import paddle.fluid.layers.utils as utils
from paddle.fluid.layers.utils import map_structure, flatten, pack_sequence_as
from paddle.fluid.dygraph import to_variable, Embedding, Linear, LayerNorm, GRUUnit
from paddle.fluid.dygraph import Embedding, Linear, LayerNorm, GRUUnit, Conv2D, Pool2D
from paddle.fluid.data_feeder import convert_dtype
from paddle.fluid import layers
......@@ -57,6 +57,8 @@ __all__ = [
'BidirectionalGRU',
'DynamicDecode',
'BeamSearchDecoder',
'Conv1dPoolLayer',
'CNNEncoder',
'MultiHeadAttention',
'FFN',
'TransformerEncoderLayer',
......@@ -2171,7 +2173,7 @@ class DynamicDecode(Layer):
import paddle
import paddle.fluid as fluid
from paddle.incubate.hapi.text import StackedLSTMCell, RNN
from paddle.incubate.hapi.text import StackedLSTMCell, DynamicDecode
vocab_size, d_model, = 100, 32
encoder_output = paddle.rand((2, 4, d_model))
......@@ -2344,6 +2346,280 @@ class DynamicDecode(Layer):
**kwargs)
class Conv1dPoolLayer(Layer):
"""
This interface is used to construct a callable object of the ``Conv1DPoolLayer``
class. The ``Conv1DPoolLayer`` class does a ``Conv1D`` and a ``Pool1D`` .
For more details, refer to code examples.The ``Conv1DPoolLayer`` layer calculates
the output based on the input, filter and strides, paddings, dilations, groups,
global_pooling, pool_type, ceil_mode, exclusive parameters.
Parameters:
num_channels (int): The number of channels in the input data.
num_filters(int): The number of filters. It is the same as the output channels.
filter_size (int): The filter size of Conv1DPoolLayer.
pool_size (int): The pooling size of Conv1DPoolLayer.
conv_stride (int): The stride size of the conv Layer in Conv1DPoolLayer.
Default: 1
pool_stride (int): The stride size of the pool layer in Conv1DPoolLayer.
Default: 1
conv_padding (int): The padding size of the conv Layer in Conv1DPoolLayer.
Default: 0
pool_padding (int): The padding of pool layer in Conv1DPoolLayer.
Default: 0
act (str): Activation type for conv layer, if it is set to None, activation
is not appended. Default: None.
pool_type (str): Pooling type can be `max` for max-pooling or `avg` for
average-pooling. Default: `max`
dilation (int): The dilation size of the conv Layer. Default: 1.
groups (int): The groups number of the conv Layer. According to grouped
convolution in Alex Krizhevsky's Deep CNN paper: when group=2, the
first half of the filters is only connected to the first half of the
input channels, while the second half of the filters is only connected
to the second half of the input channels. Default: 1.
global_pooling (bool): Whether to use the global pooling. If it is true,
`pool_size` and `pool_padding` would be ignored. Default: False
ceil_mode (bool, optional): Whether to use the ceil function to calculate output
height and width.False is the default. If it is set to False, the floor function
will be used. Default: False.
exclusive (bool, optional): Whether to exclude padding points in average pooling mode.
Default: True.
use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: False
param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
will create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
If it is set to False, no bias will be added to the output units.
If it is set to None or one attribute of ParamAttr, conv2d
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. Default: None.
Example:
.. code-block:: python
import paddle
import paddle.fluid as fluid
from paddle.incubate.hapi.text import Conv1dPoolLayer
# input: [batch_size, num_channels, sequence_length]
input = paddle.rand((2, 32, 4))
cov2d = Conv1dPoolLayer(num_channels=32,
num_filters=64,
filter_size=2,
pool_size=2)
output = cov2d(input)
"""
def __init__(self,
num_channels,
num_filters,
filter_size,
pool_size,
conv_stride=1,
pool_stride=1,
conv_padding=0,
pool_padding=0,
act=None,
pool_type='max',
global_pooling=False,
dilation=1,
groups=None,
ceil_mode=False,
exclusive=True,
use_cudnn=False,
param_attr=None,
bias_attr=None):
super(Conv1dPoolLayer, self).__init__()
self._conv2d = Conv2D(
num_channels=num_channels,
num_filters=num_filters,
filter_size=[filter_size, 1],
stride=[conv_stride, 1],
padding=[conv_padding, 0],
dilation=[dilation, 1],
groups=groups,
param_attr=param_attr,
bias_attr=bias_attr,
use_cudnn=use_cudnn,
act=act)
self._pool2d = Pool2D(
pool_size=[pool_size, 1],
pool_type=pool_type,
pool_stride=[pool_stride, 1],
pool_padding=[pool_padding, 0],
global_pooling=global_pooling,
use_cudnn=use_cudnn,
ceil_mode=ceil_mode,
exclusive=exclusive)
def forward(self, input):
"""
Performs conv1d and pool1d on the input.
Parameters:
input (Variable): A 3-D Tensor, shape is [N, C, H] where N, C and H
representing `batch_size`, `num_channels` and `sequence_length`
separately. data type can be float32 or float64
Returns:
Variable: The 3-D output tensor after conv and pool. It has the same \
data type as input.
"""
x = fluid.layers.unsqueeze(input, axes=[-1])
x = self._conv2d(x)
x = self._pool2d(x)
x = fluid.layers.squeeze(x, axes=[-1])
return x
class CNNEncoder(Layer):
"""
This interface is used to construct a callable object of the ``CNNEncoder``
class. The ``CNNEncoder`` is composed of multiple ``Conv1dPoolLayer`` .
``CNNEncoder`` can define every Conv1dPoolLayer with different or same parameters.
The ``Conv1dPoolLayer`` in ``CNNEncoder`` is parallel. The results of every
``Conv1dPoolLayer`` will concat at the channel dimension as the final output.
Parameters:
num_channels(int|list|tuple): The number of channels in the input data. If
`num_channels` is a list or tuple, the length of `num_channels` must
equal to `num_layers`. If `num_channels` is a int, all conv1dpoollayer's
`num_channels` are the value of `num_channels`.
num_filters(int|list|tuple): The number of filters. It is the same as the
output channels. If `num_filters` is a list or tuple, the length of
`num_filters` must equal `num_layers`. If `num_filters` is a int,
all conv1dpoollayer's `num_filters` are the value of `num_filters`.
filter_size(int|list|tuple): The filter size of Conv1DPoolLayer in CNNEncoder.
If `filter_size` is a list or tuple, the length of `filter_size` must
equal `num_layers`. If `filter_size` is a int, all conv1dpoollayer's
`filter_size` are the value of `filter_size`.
pool_size(int|list|tuple): The pooling size of Conv1DPoolLayer in CNNEncoder.
If `pool_size` is a list or tuple, the length of `pool_size` must equal
`num_layers`. If `pool_size` is a int, all conv1dpoollayer's `pool_size`
are the value of `pool_size`.
num_layers(int): The number of conv1dpoolLayer used in CNNEncoder.
conv_stride(int|list|tuple): The stride size of the conv Layer in Conv1DPoolLayer.
If `conv_stride` is a list or tuple, the length of `conv_stride` must
equal `num_layers`. If conv_stride is a int, all conv1dpoollayer's `conv_stride`
are the value of `conv_stride`. Default: 1
pool_stride(int|list|tuple): The stride size of the pool layer in Conv1DPoolLayer.
If `pool_stride` is a list or tuple, the length of `pool_stride` must
equal `num_layers`. If `pool_stride` is a int, all conv1dpoollayer's `pool_stride`
are the value of `pool_stride`. Default: 1
conv_padding(int|list|tuple): The padding size of the conv Layer in Conv1DPoolLayer.
If `conv_padding` is a list or tuple, the length of `conv_padding` must
equal `num_layers`. If `conv_padding` is a int, all conv1dpoollayer's `conv_padding`
are the value of `conv_padding`. Default: 0
pool_padding(int|list|tuple): The padding size of pool layer in Conv1DPoolLayer.
If `pool_padding` is a list or tuple, the length of `pool_padding` must
equal `num_layers`.If `pool_padding` is a int, all conv1dpoollayer's `pool_padding`
are the value of `pool_padding`. Default: 0
act (str|list|tuple): Activation type for `Conv1dPoollayer` layer, if it is set to None,
activation is not appended. Default: None.
pool_type (str): Pooling type can be `max` for max-pooling or `avg` for
average-pooling. Default: `max`
global_pooling (bool): Whether to use the global pooling. If it is true,
`pool_size` and `pool_padding` would be ignored. Default: False
use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: False
Example:
.. code-block:: python
import paddle
import paddle.fluid as fluid
from paddle.incubate.hapi.text import CNNEncoder
# input: [batch_size, num_channels, sequence_length]
input = paddle.rand((2, 32, 8))
cov_encoder = CNNEncoder(num_layers=2,
num_channels=32,
num_filters=64,
filter_size=[2, 3],
pool_size=[7, 6])
output = cov_encoder(input) # [2, 128, 1]
"""
def __init__(self,
num_channels,
num_filters,
filter_size,
pool_size,
num_layers=1,
conv_stride=1,
pool_stride=1,
conv_padding=0,
pool_padding=0,
act=None,
pool_type='max',
global_pooling=False,
use_cudnn=False):
super(CNNEncoder, self).__init__()
self.num_layers = num_layers
self.num_channels = num_channels
self.num_filters = num_filters
self.filter_size = filter_size
self.pool_size = pool_size
self.conv_stride = conv_stride
self.pool_stride = pool_stride
self.conv_padding = conv_padding
self.pool_padding = pool_padding
self.use_cudnn = use_cudnn
self.act = act
self.pool_type = pool_type
self.global_pooling = global_pooling
self.conv1d_pool_layers = fluid.dygraph.LayerList([
Conv1dPoolLayer(
num_channels=self.num_channels if
isinstance(self.num_channels, int) else self.num_channels[i],
num_filters=self.num_filters
if isinstance(self.num_channels, int) else self.num_filters[i],
filter_size=self.filter_size
if isinstance(self.filter_size, int) else self.filter_size[i],
pool_size=self.pool_size
if isinstance(self.pool_size, int) else self.pool_size[i],
conv_stride=self.conv_stride
if isinstance(self.conv_stride, int) else self.conv_stride[i],
pool_stride=self.pool_stride
if isinstance(self.pool_stride, int) else self.pool_stride[i],
conv_padding=self.conv_padding
if isinstance(self.conv_padding,
int) else self.conv_padding[i],
pool_padding=self.pool_padding
if isinstance(self.pool_padding,
int) else self.pool_padding[i],
act=self.act[i]
if isinstance(self.act, (list, tuple)) else self.act,
pool_type=self.pool_type,
global_pooling=self.global_pooling,
use_cudnn=self.use_cudnn) for i in range(num_layers)
])
def forward(self, input):
"""
Performs multiple parallel conv1d and pool1d, and concat the results of
them at the channel dimension to produce the final output.
Parameters:
input (Variable): A 3-D Tensor, shape is [N, C, H] where N, C and H
representing `batch_size`, `num_channels` and `sequence_length`
separately. data type can be float32 or float64
Returns:
Variable: The 3-D output tensor produced by concatenating results of \
all Conv1dPoolLayer. It has the same data type as input.
"""
res = [
conv1d_pool_layer(input)
for conv1d_pool_layer in self.conv1d_pool_layers
]
out = fluid.layers.concat(input=res, axis=1)
return out
class TransformerCell(Layer):
"""
TransformerCell wraps a Transformer decoder producing logits from `inputs`
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册