Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
hapi
提交
863897ce
H
hapi
项目概览
PaddlePaddle
/
hapi
通知
11
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
4
列表
看板
标记
里程碑
合并请求
7
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
H
hapi
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
4
Issue
4
列表
看板
标记
里程碑
合并请求
7
合并请求
7
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
863897ce
编写于
3月 31, 2020
作者:
G
guosheng
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'master' of
https://github.com/PaddlePaddle/hapi
into fix-data-train
上级
dd446685
4d22fee0
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
480 addition
and
306 deletion
+480
-306
callbacks.py
callbacks.py
+14
-8
distributed.py
distributed.py
+58
-105
mnist.py
mnist.py
+12
-3
model.py
model.py
+360
-187
tests/test_model.py
tests/test_model.py
+36
-3
未找到文件。
callbacks.py
浏览文件 @
863897ce
...
...
@@ -16,7 +16,7 @@ import six
import
copy
from
progressbar
import
ProgressBar
from
distributed
import
get_local_rank
from
paddle.fluid.dygraph.parallel
import
ParallelEnv
def
config_callbacks
(
callbacks
=
None
,
...
...
@@ -195,7 +195,7 @@ class ProgBarLogger(Callback):
self
.
steps
=
self
.
params
[
'steps'
]
self
.
epoch
=
epoch
self
.
train_step
=
0
if
self
.
verbose
and
self
.
epochs
and
get_local_rank
()
==
0
:
if
self
.
verbose
and
self
.
epochs
and
ParallelEnv
().
local_rank
==
0
:
print
(
'Epoch %d/%d'
%
(
epoch
+
1
,
self
.
epochs
))
self
.
train_progbar
=
ProgressBar
(
num
=
self
.
steps
,
verbose
=
self
.
verbose
)
...
...
@@ -213,8 +213,8 @@ class ProgBarLogger(Callback):
logs
=
logs
or
{}
self
.
train_step
+=
1
if
self
.
train_step
%
self
.
log_freq
==
0
and
self
.
verbose
and
get_local_rank
(
)
==
0
:
if
self
.
train_step
%
self
.
log_freq
==
0
and
self
.
verbose
and
ParallelEnv
(
)
.
local_rank
==
0
:
# if steps is not None, last step will update in on_epoch_end
if
self
.
steps
and
self
.
train_step
<
self
.
steps
:
self
.
_updates
(
logs
,
'train'
)
...
...
@@ -223,7 +223,7 @@ class ProgBarLogger(Callback):
def
on_epoch_end
(
self
,
epoch
,
logs
=
None
):
logs
=
logs
or
{}
if
self
.
verbose
and
get_local_rank
()
==
0
:
if
self
.
verbose
and
ParallelEnv
().
local_rank
==
0
:
self
.
_updates
(
logs
,
'train'
)
def
on_eval_begin
(
self
,
logs
=
None
):
...
...
@@ -233,7 +233,7 @@ class ProgBarLogger(Callback):
self
.
evaled_samples
=
0
self
.
eval_progbar
=
ProgressBar
(
num
=
self
.
eval_steps
,
verbose
=
self
.
verbose
)
if
get_local_rank
()
==
0
:
if
ParallelEnv
().
local_rank
==
0
:
print
(
'Eval begin...'
)
def
on_eval_batch_end
(
self
,
step
,
logs
=
None
):
...
...
@@ -242,9 +242,15 @@ class ProgBarLogger(Callback):
samples
=
logs
.
get
(
'batch_size'
,
1
)
self
.
evaled_samples
+=
samples
if
self
.
eval_step
%
self
.
log_freq
==
0
and
self
.
verbose
and
ParallelEnv
(
).
local_rank
==
0
:
# if steps is not None, last step will update in on_epoch_end
if
self
.
eval_steps
and
self
.
eval_step
<
self
.
eval_steps
:
self
.
_updates
(
logs
,
'eval'
)
def
on_eval_end
(
self
,
logs
=
None
):
logs
=
logs
or
{}
if
self
.
verbose
and
get_local_rank
()
==
0
:
if
self
.
verbose
and
ParallelEnv
().
local_rank
==
0
:
self
.
_updates
(
logs
,
'eval'
)
print
(
'Eval samples: %d'
%
(
self
.
evaled_samples
))
...
...
@@ -258,7 +264,7 @@ class ModelCheckpoint(Callback):
self
.
epoch
=
epoch
def
_is_save
(
self
):
return
self
.
model
and
self
.
save_dir
and
get_local_rank
()
==
0
return
self
.
model
and
self
.
save_dir
and
ParallelEnv
().
local_rank
==
0
def
on_epoch_end
(
self
,
epoch
,
logs
=
None
):
if
self
.
_is_save
()
and
self
.
epoch
%
self
.
save_freq
==
0
:
...
...
distributed.py
浏览文件 @
863897ce
...
...
@@ -13,30 +13,20 @@
# limitations under the License.
import
os
import
sys
import
six
import
time
import
math
import
socket
import
contextlib
from
contextlib
import
closing
from
six
import
string_types
import
numpy
as
np
from
collections
import
OrderedDict
from
paddle
import
fluid
import
paddle.fluid.unique_name
as
nameGen
from
paddle.fluid
import
core
from
paddle
.fluid
import
framework
from
paddle
import
fluid
from
paddle.fluid.layers
import
collective
from
paddle.fluid.dygraph
import
to_variable
,
no_grad
,
layers
from
paddle.fluid.framework
import
Variable
from
paddle.fluid.executor
import
global_scope
from
paddle.fluid.dygraph.parallel
import
ParallelEnv
,
ParallelStrategy
from
paddle.fluid.io
import
BatchSampler
from
paddle.fluid.dygraph.parallel
import
Env
,
DataParallel
,
ParallelStrategy
from
paddle.fluid.layers.collective
import
_c_allreduce
,
_c_allgather
,
_c_broadcast
,
\
_c_sync_comm_stream
,
_c_sync_calc_stream
from
paddle.fluid.io
import
BatchSampler
,
DataLoader
_parallel_context_initialized
=
False
__parallel_context_init
=
False
class
DistributedBatchSampler
(
BatchSampler
):
"""Sampler that restricts data loading to a subset of the dataset.
...
...
@@ -71,11 +61,13 @@ class DistributedBatchSampler(BatchSampler):
self
.
shuffle
=
shuffle
assert
isinstance
(
drop_last
,
bool
),
\
"drop_last should be a boolean number"
self
.
drop_last
=
drop_last
self
.
nranks
=
get_nranks
()
self
.
local_rank
=
get_local_rank
()
self
.
nranks
=
ParallelEnv
().
nranks
self
.
local_rank
=
ParallelEnv
().
local_rank
self
.
epoch
=
0
self
.
num_samples
=
int
(
math
.
ceil
(
len
(
self
.
dataset
)
*
1.0
/
self
.
nranks
))
self
.
num_samples
=
int
(
math
.
ceil
(
len
(
self
.
dataset
)
*
1.0
/
self
.
nranks
))
self
.
total_size
=
self
.
num_samples
*
self
.
nranks
def
__iter__
(
self
):
...
...
@@ -86,9 +78,28 @@ class DistributedBatchSampler(BatchSampler):
if
self
.
shuffle
:
np
.
random
.
RandomState
(
self
.
epoch
).
shuffle
(
indices
)
self
.
epoch
+=
1
# subsample
indices
=
indices
[
self
.
local_rank
*
self
.
num_samples
:
(
self
.
local_rank
+
1
)
*
self
.
num_samples
]
def
_get_indices_by_batch_size
(
indices
):
subsampled_indices
=
[]
last_batch_size
=
self
.
total_size
%
(
self
.
batch_size
*
self
.
nranks
)
assert
last_batch_size
%
self
.
nranks
==
0
last_local_batch_size
=
last_batch_size
//
self
.
nranks
for
i
in
range
(
self
.
local_rank
*
self
.
batch_size
,
len
(
indices
)
-
last_batch_size
,
self
.
batch_size
*
self
.
nranks
):
subsampled_indices
.
extend
(
indices
[
i
:
i
+
self
.
batch_size
])
indices
=
indices
[
len
(
indices
)
-
last_batch_size
:]
subsampled_indices
.
extend
(
indices
[
self
.
local_rank
*
last_local_batch_size
:(
self
.
local_rank
+
1
)
*
last_local_batch_size
])
return
subsampled_indices
if
self
.
nranks
>
1
:
indices
=
_get_indices_by_batch_size
(
indices
)
assert
len
(
indices
)
==
self
.
num_samples
_sample_iter
=
iter
(
indices
)
...
...
@@ -106,46 +117,37 @@ class DistributedBatchSampler(BatchSampler):
num_samples
+=
int
(
not
self
.
drop_last
)
*
(
self
.
batch_size
-
1
)
return
num_samples
//
self
.
batch_size
def
_all_gather
(
x
,
nranks
,
ring_id
=
0
,
use_calc_stream
=
True
):
return
_c_allgather
(
x
,
nranks
,
ring_id
=
ring_id
,
use_calc_stream
=
use_calc_stream
)
def
get_local_rank
():
return
Env
().
local_rank
def
set_epoch
(
self
,
epoch
):
self
.
epoch
=
epoch
def
get_nranks
():
return
Env
().
nranks
def
_all_gather
(
x
,
nranks
,
ring_id
=
0
,
use_calc_stream
=
True
):
return
collective
.
_c_allgather
(
x
,
nranks
,
ring_id
=
ring_id
,
use_calc_stream
=
use_calc_stream
)
def
wait_server_ready
(
endpoints
):
assert
not
isinstance
(
endpoints
,
string_types
)
assert
not
isinstance
(
endpoints
,
s
ix
.
s
tring_types
)
while
True
:
all_ok
=
True
not_ready_endpoints
=
[]
for
ep
in
endpoints
:
ip_port
=
ep
.
split
(
":"
)
with
closing
(
socket
.
socket
(
socket
.
AF_INET
,
socket
.
SOCK_STREAM
))
as
sock
:
with
contextlib
.
closing
(
socket
.
socket
(
socket
.
AF_INET
,
socket
.
SOCK_STREAM
))
as
sock
:
sock
.
settimeout
(
2
)
result
=
sock
.
connect_ex
((
ip_port
[
0
],
int
(
ip_port
[
1
])))
if
result
!=
0
:
all_ok
=
False
not_ready_endpoints
.
append
(
ep
)
if
not
all_ok
:
sys
.
stderr
.
write
(
"server not ready, wait 3 sec to retry...
\n
"
)
sys
.
stderr
.
write
(
"not ready endpoints:"
+
str
(
not_ready_endpoints
)
+
"
\n
"
)
sys
.
stderr
.
flush
()
time
.
sleep
(
3
)
else
:
break
def
init_communicator
(
program
,
rank
,
nranks
,
wait_port
,
current_endpoint
,
endpoints
):
def
init_communicator
(
program
,
rank
,
nranks
,
wait_port
,
current_endpoint
,
endpoints
):
if
nranks
<
2
:
return
other_endpoints
=
endpoints
[:]
...
...
@@ -154,9 +156,9 @@ def init_communicator(program, rank, nranks, wait_port,
wait_server_ready
(
other_endpoints
)
block
=
program
.
global_block
()
nccl_id_var
=
block
.
create_var
(
name
=
nameGen
.
generate
(
'nccl_id'
),
name
=
fluid
.
unique_name
.
generate
(
'nccl_id'
),
persistable
=
True
,
type
=
core
.
VarDesc
.
VarType
.
RAW
)
type
=
fluid
.
core
.
VarDesc
.
VarType
.
RAW
)
block
.
append_op
(
type
=
'c_gen_nccl_id'
,
...
...
@@ -181,25 +183,28 @@ def init_communicator(program, rank, nranks, wait_port,
def
prepare_distributed_context
(
place
=
None
):
if
place
is
None
:
place
=
fluid
.
CUDAPlace
(
Env
().
dev_id
)
if
Env
().
nranks
>
1
\
place
=
fluid
.
CUDAPlace
(
ParallelEnv
().
dev_id
)
if
Parallel
Env
().
nranks
>
1
\
else
fluid
.
CUDAPlace
(
0
)
strategy
=
ParallelStrategy
()
strategy
.
nranks
=
Env
().
nranks
strategy
.
local_rank
=
Env
().
local_rank
strategy
.
trainer_endpoints
=
Env
().
trainer_endpoints
strategy
.
current_endpoint
=
Env
().
current_endpoint
strategy
.
nranks
=
Parallel
Env
().
nranks
strategy
.
local_rank
=
Parallel
Env
().
local_rank
strategy
.
trainer_endpoints
=
Parallel
Env
().
trainer_endpoints
strategy
.
current_endpoint
=
Parallel
Env
().
current_endpoint
if
strategy
.
nranks
<
2
:
return
global
__parallel_context_init
global
_parallel_context_initialized
if
not
_parallel_context_initialized
and
isinstance
(
place
,
fluid
.
CUDAPlace
):
if
not
__parallel_context_init
and
isinstance
(
place
,
core
.
CUDAPlace
):
def
_init_context
():
communicator_prog
=
framework
.
Program
()
init_communicator
(
communicator_prog
,
strategy
.
local_rank
,
strategy
.
nranks
,
True
,
strategy
.
current_endpoint
,
strategy
.
trainer_endpoints
)
communicator_prog
=
fluid
.
Program
()
init_communicator
(
communicator_prog
,
strategy
.
local_rank
,
strategy
.
nranks
,
True
,
strategy
.
current_endpoint
,
strategy
.
trainer_endpoints
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
communicator_prog
)
...
...
@@ -213,57 +218,5 @@ def prepare_distributed_context(place=None):
else
:
assert
(
"Only support CUDAPlace for now."
)
_
_parallel_context_init
=
True
_
parallel_context_initialized
=
True
return
strategy
class
DistributedDataParallel
(
DataParallel
):
def
__init__
(
self
,
layers
,
strategy
=
None
):
if
strategy
is
None
:
strategy
=
ParallelStrategy
()
strategy
.
nranks
=
Env
().
nranks
strategy
.
local_rank
=
Env
().
local_rank
strategy
.
trainer_endpoints
=
Env
().
trainer_endpoints
strategy
.
current_endpoint
=
Env
().
current_endpoint
super
(
DistributedDataParallel
,
self
).
__init__
(
layers
,
strategy
)
@
no_grad
def
apply_collective_grads
(
self
):
"""
AllReduce the Parameters' gradient.
"""
if
not
self
.
_is_data_parallel_mode
():
return
grad_var_set
=
set
()
grad_vars
=
[]
for
param
in
self
.
_layers
.
parameters
():
# NOTE(zcd): The grad_ivar maybe no generated.
if
param
.
trainable
and
param
.
_grad_ivar
():
g_var
=
param
.
_grad_ivar
()
grad_vars
.
append
(
g_var
)
assert
g_var
not
in
grad_var_set
grad_var_set
.
add
(
g_var
)
mega_bytes
=
128
*
1024
*
1024
group_idx
=
0
memory_counter
=
0
grad_var_groups
=
OrderedDict
()
dtype
=
grad_vars
[
0
].
dtype
for
g_var
in
grad_vars
:
# Note: the dtype of the same group should be the same.
bytes
=
np
.
prod
(
g_var
.
shape
)
*
core
.
size_of_dtype
(
g_var
.
dtype
)
if
memory_counter
<
mega_bytes
and
dtype
==
g_var
.
dtype
:
memory_counter
+=
bytes
else
:
memory_counter
=
bytes
group_idx
+=
1
grad_var_groups
.
setdefault
(
group_idx
,
[]).
append
(
g_var
)
coalesced_grads_and_vars
=
self
.
_coalesce_tensors
(
grad_var_groups
)
for
coalesced_grad
,
_
,
_
in
coalesced_grads_and_vars
:
collective
.
_c_allreduce
(
coalesced_grad
,
coalesced_grad
,
use_calc_stream
=
True
)
self
.
_split_tensors
(
coalesced_grads_and_vars
)
mnist.py
浏览文件 @
863897ce
...
...
@@ -26,7 +26,7 @@ from paddle.fluid.optimizer import Momentum
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
Linear
from
paddle.fluid.io
import
MNIST
as
MnistDataset
from
model
import
Model
,
CrossEntropy
,
Input
,
init_context
from
model
import
Model
,
CrossEntropy
,
Input
,
set_device
from
metrics
import
Accuracy
...
...
@@ -106,7 +106,8 @@ class MNIST(Model):
def
main
():
init_context
(
'dynamic'
if
FLAGS
.
dynamic
else
'static'
)
device
=
set_device
(
FLAGS
.
device
)
fluid
.
enable_dygraph
(
device
)
if
FLAGS
.
dynamic
else
None
train_dataset
=
MnistDataset
(
mode
=
'train'
)
val_dataset
=
MnistDataset
(
mode
=
'test'
)
...
...
@@ -118,7 +119,13 @@ def main():
optim
=
Momentum
(
learning_rate
=
FLAGS
.
lr
,
momentum
=
.
9
,
parameter_list
=
model
.
parameters
())
model
.
prepare
(
optim
,
CrossEntropy
(),
Accuracy
(
topk
=
(
1
,
2
)),
inputs
,
labels
)
model
.
prepare
(
optim
,
CrossEntropy
(),
Accuracy
(
topk
=
(
1
,
2
)),
inputs
,
labels
,
device
=
FLAGS
.
device
)
if
FLAGS
.
resume
is
not
None
:
model
.
load
(
FLAGS
.
resume
)
...
...
@@ -131,6 +138,8 @@ def main():
if
__name__
==
'__main__'
:
parser
=
argparse
.
ArgumentParser
(
"CNN training on MNIST"
)
parser
.
add_argument
(
"--device"
,
type
=
str
,
default
=
'gpu'
,
help
=
"device to use, gpu or cpu"
)
parser
.
add_argument
(
"-d"
,
"--dynamic"
,
action
=
'store_true'
,
help
=
"enable dygraph mode"
)
parser
.
add_argument
(
...
...
model.py
浏览文件 @
863897ce
...
...
@@ -20,26 +20,36 @@ import pickle
import
numpy
as
np
import
six
import
warnings
from
collections
import
Iterable
from
collections
import
OrderedDict
import
tqdm
from
collections
import
OrderedDict
from
collections
import
Iterable
from
paddle
import
fluid
from
paddle.fluid.framework
import
in_dygraph_mode
,
Variable
from
paddle.fluid.executor
import
global_scope
from
paddle.fluid.io
import
is_belong_to_optimizer
from
paddle.fluid.dygraph.base
import
to_variable
from
paddle.fluid.dygraph.parallel
import
ParallelEnv
from
paddle.fluid.layers.utils
import
flatten
from
paddle.fluid.incubate.fleet.collective
import
fleet
,
DistributedStrategy
import
paddle.fluid.incubate.fleet.base.role_maker
as
role_maker
import
distributed
from
distributed
import
DistributedBatchSampler
from
paddle.fluid.io
import
DataLoader
from
paddle.fluid.incubate.fleet.base
import
role_maker
from
paddle.fluid.io
import
DataLoader
,
Dataset
from
distributed
import
DistributedBatchSampler
,
_all_gather
,
prepare_distributed_context
,
_parallel_context_initialized
from
metrics
import
Metric
from
callbacks
import
config_callbacks
__all__
=
[
'Model'
,
'Loss'
,
'CrossEntropy'
,
'Input'
]
__all__
=
[
'Model'
,
'Loss'
,
'CrossEntropy'
,
'Input'
,
'set_device'
]
def
set_device
(
device
):
assert
isinstance
(
device
,
six
.
string_types
)
and
device
.
lower
()
in
[
'cpu'
,
'gpu'
],
\
"Expected device in ['cpu', 'gpu'], but got {}"
.
format
(
device
)
place
=
fluid
.
CUDAPlace
(
ParallelEnv
().
dev_id
)
\
if
device
.
lower
()
==
'gpu'
and
fluid
.
is_compiled_with_cuda
()
\
else
fluid
.
CPUPlace
()
return
place
def
to_list
(
value
):
...
...
@@ -85,18 +95,6 @@ def extract_args(func):
return
inspect
.
getargspec
(
func
)[
0
]
def
init_context
(
backend
):
assert
isinstance
(
backend
,
str
)
and
backend
.
lower
()
in
[
'dynamic'
,
'static'
],
\
"Expected backend in ['dynamic', 'static'], but got {}"
.
format
(
backend
)
place
=
fluid
.
CUDAPlace
(
distributed
.
Env
().
dev_id
)
if
\
distributed
.
Env
().
nranks
>
1
else
fluid
.
CUDAPlace
(
0
)
distributed
.
prepare_distributed_context
(
place
)
backend
=
backend
.
lower
()
if
backend
==
'dynamic'
:
fluid
.
enable_dygraph
(
place
)
class
Input
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
shape
=
None
,
dtype
=
None
,
name
=
None
):
super
(
Input
,
self
).
__init__
()
...
...
@@ -162,8 +160,8 @@ class StaticGraphAdapter(object):
'test_batch'
:
0
}
self
.
_nranks
=
distributed
.
Env
().
nranks
self
.
_local_rank
=
distributed
.
Env
().
local_rank
self
.
_nranks
=
Parallel
Env
().
nranks
self
.
_local_rank
=
Parallel
Env
().
local_rank
@
property
def
mode
(
self
):
...
...
@@ -268,7 +266,8 @@ class StaticGraphAdapter(object):
# When using static learning rate, static-graph would make it
# a persistable var named 'unique_name.generate("learning_rate")',
# However, dygraph wouldn't save it.
if
var
.
name
not
in
state
:
continue
if
var
.
name
not
in
state
:
continue
else
:
# moment and other accumulators
if
var
.
name
not
in
converted_state
:
...
...
@@ -367,8 +366,8 @@ class StaticGraphAdapter(object):
for
metric
,
state
in
zip
(
self
.
model
.
_metrics
,
metric_states
):
# cut off padding size
if
self
.
mode
!=
'train'
and
self
.
model
.
_test_dataloader
is
not
None
\
and
isinstance
(
self
.
model
.
_test_dataloader
,
DataLoader
)
\
and
self
.
_nranks
>
1
:
and
isinstance
(
self
.
model
.
_test_dataloader
,
DataLoader
)
\
and
self
.
_nranks
>
1
:
total_size
=
len
(
self
.
model
.
_test_dataloader
.
dataset
)
# TODO: fixme if have better way to get batch size
samples
=
state
[
0
].
shape
[
0
]
...
...
@@ -408,7 +407,7 @@ class StaticGraphAdapter(object):
for
op
in
list
(
prog
.
global_block
().
ops
):
prog
.
global_block
().
_remove_op
(
0
)
if
mode
==
'train'
and
self
.
model
.
_optimizer
\
and
self
.
model
.
_optimizer
.
_learning_rate_map
:
and
self
.
model
.
_optimizer
.
_learning_rate_map
:
# HACK workaround learning rate map issue
lr_var
=
self
.
model
.
_optimizer
.
_learning_rate_map
[
self
.
_orig_prog
]
self
.
model
.
_optimizer
.
_learning_rate_map
[
prog
]
=
lr_var
...
...
@@ -427,14 +426,9 @@ class StaticGraphAdapter(object):
losses
=
self
.
model
.
_loss_function
(
outputs
,
labels
)
if
self
.
_nranks
>
1
and
mode
!=
'train'
:
outputs
=
[
distributed
.
_all_gather
(
o
,
self
.
_nranks
)
for
o
in
outputs
]
outputs
=
[
_all_gather
(
o
,
self
.
_nranks
)
for
o
in
outputs
]
if
mode
!=
'test'
:
labels
=
[
distributed
.
_all_gather
(
l
,
self
.
_nranks
)
for
l
in
labels
]
labels
=
[
_all_gather
(
l
,
self
.
_nranks
)
for
l
in
labels
]
if
mode
!=
'test'
:
for
metric
in
self
.
model
.
_metrics
:
...
...
@@ -471,31 +465,22 @@ class StaticGraphAdapter(object):
if
compiled_prog
is
not
None
:
return
compiled_prog
device
=
self
.
model
.
_device
device_ids
=
self
.
model
.
_device_ids
assert
self
.
model
.
_place
is
not
None
,
\
"device is not set, please call `model.prepare()` first"
if
device
.
lower
()
==
'gpu'
:
places
=
fluid
.
cuda_places
(
device_ids
)
else
:
places
=
fluid
.
cpu_places
(
len
(
device_ids
)
if
device_ids
else
None
)
place
=
self
.
model
.
_place
# XXX *ALL WEIGHTS* should be initialized upon model construction
# even if `forward()` may run different code path for different mode
# therefore startup program only needs to run once
if
self
.
_executor
is
None
:
if
self
.
_nranks
>
1
and
device
.
lower
()
==
'gpu'
:
gpu_id
=
int
(
distributed
.
Env
().
dev_id
)
place
=
fluid
.
CUDAPlace
(
gpu_id
)
if
device
.
lower
(
)
==
'gpu'
else
fluid
.
CPUPlace
()
else
:
place
=
places
[
0
]
self
.
_executor
=
fluid
.
Executor
(
place
)
# XXX incremental initialization
uninitialized
=
[]
for
var_py
in
self
.
_startup_prog
.
list_vars
():
var
=
fluid
.
global_scope
().
find_var
(
var_py
.
name
)
if
not
var_py
.
name
.
startswith
(
'nccl_id'
)
and
var
and
\
var
.
get_tensor
().
_is_initialized
():
var
.
get_tensor
().
_is_initialized
():
continue
uninitialized
.
append
(
var_py
)
...
...
@@ -506,14 +491,8 @@ class StaticGraphAdapter(object):
if
self
.
_nranks
<
2
:
compiled_prog
=
fluid
.
CompiledProgram
(
prog
)
else
:
compiled_prog
=
prog
#fleet.main_program
if
len
(
places
)
>
1
:
loss_name
=
None
if
mode
==
'train'
and
self
.
_loss_endpoint
is
not
None
:
loss_name
=
self
.
_loss_endpoint
.
name
compiled_prog
=
compiled_prog
.
with_data_parallel
(
loss_name
=
loss_name
,
places
=
places
)
compiled_prog
=
prog
self
.
_compiled_progs
[
mode
]
=
compiled_prog
...
...
@@ -521,8 +500,8 @@ class DynamicGraphAdapter(object):
def
__init__
(
self
,
model
):
super
(
DynamicGraphAdapter
,
self
).
__init__
()
self
.
model
=
model
self
.
_nranks
=
distributed
.
Env
().
nranks
self
.
_local_rank
=
distributed
.
Env
().
local_rank
self
.
_nranks
=
Parallel
Env
().
nranks
self
.
_local_rank
=
Parallel
Env
().
local_rank
self
.
_merge_count
=
{
'eval_total'
:
0
,
'test_total'
:
0
,
...
...
@@ -531,7 +510,13 @@ class DynamicGraphAdapter(object):
}
if
self
.
_nranks
>
1
:
self
.
ddp_model
=
distributed
.
DistributedDataParallel
(
self
.
model
)
stradegy
=
fluid
.
dygraph
.
parallel
.
ParallelStrategy
()
stradegy
.
nranks
=
ParallelEnv
().
nranks
stradegy
.
local_rank
=
ParallelEnv
().
local_rank
stradegy
.
trainer_endpoints
=
ParallelEnv
().
trainer_endpoints
stradegy
.
current_endpoint
=
ParallelEnv
().
current_endpoint
self
.
ddp_model
=
fluid
.
dygraph
.
parallel
.
DataParallel
(
self
.
model
,
stradegy
)
@
property
def
mode
(
self
):
...
...
@@ -551,15 +536,14 @@ class DynamicGraphAdapter(object):
if
labels
is
not
None
:
labels
=
[
to_variable
(
l
)
for
l
in
to_list
(
labels
)]
if
self
.
_nranks
>
1
:
outputs
=
self
.
ddp_model
.
forward
(
*
[
to_variable
(
x
)
for
x
in
inputs
])
outputs
=
self
.
ddp_model
.
forward
(
*
[
to_variable
(
x
)
for
x
in
inputs
])
losses
=
self
.
model
.
_loss_function
(
outputs
,
labels
)
final_loss
=
fluid
.
layers
.
sum
(
losses
)
final_loss
=
self
.
ddp_model
.
scale_loss
(
final_loss
)
final_loss
.
backward
()
self
.
ddp_model
.
apply_collective_grads
()
else
:
outputs
=
self
.
model
.
forward
(
*
[
to_variable
(
x
)
for
x
in
inputs
])
outputs
=
self
.
model
.
forward
(
*
[
to_variable
(
x
)
for
x
in
inputs
])
losses
=
self
.
model
.
_loss_function
(
outputs
,
labels
)
final_loss
=
fluid
.
layers
.
sum
(
losses
)
final_loss
.
backward
()
...
...
@@ -570,11 +554,11 @@ class DynamicGraphAdapter(object):
for
metric
in
self
.
model
.
_metrics
:
metric_outs
=
metric
.
add_metric_op
(
to_list
(
outputs
),
to_list
(
labels
))
m
=
metric
.
update
(
*
[
to_numpy
(
m
)
for
m
in
to_list
(
metric_outs
)])
m
=
metric
.
update
(
*
[
to_numpy
(
m
)
for
m
in
to_list
(
metric_outs
)])
metrics
.
append
(
m
)
return
([
to_numpy
(
l
)
for
l
in
losses
],
metrics
)
\
if
len
(
metrics
)
>
0
else
[
to_numpy
(
l
)
for
l
in
losses
]
if
len
(
metrics
)
>
0
else
[
to_numpy
(
l
)
for
l
in
losses
]
def
eval
(
self
,
inputs
,
labels
=
None
):
super
(
Model
,
self
.
model
).
eval
()
...
...
@@ -582,17 +566,14 @@ class DynamicGraphAdapter(object):
inputs
=
to_list
(
inputs
)
if
labels
is
not
None
:
labels
=
[
to_variable
(
l
)
for
l
in
to_list
(
labels
)]
outputs
=
self
.
model
.
forward
(
*
[
to_variable
(
x
)
for
x
in
inputs
])
outputs
=
self
.
model
.
forward
(
*
[
to_variable
(
x
)
for
x
in
inputs
])
if
self
.
model
.
_loss_function
:
losses
=
self
.
model
.
_loss_function
(
outputs
,
labels
)
else
:
losses
=
[]
if
self
.
_nranks
>
1
:
outputs
=
[
distributed
.
_all_gather
(
o
,
self
.
_nranks
)
for
o
in
to_list
(
outputs
)
]
labels
=
[
distributed
.
_all_gather
(
l
,
self
.
_nranks
)
for
l
in
labels
]
outputs
=
[
_all_gather
(
o
,
self
.
_nranks
)
for
o
in
to_list
(
outputs
)]
labels
=
[
_all_gather
(
l
,
self
.
_nranks
)
for
l
in
labels
]
metrics
=
[]
for
metric
in
self
.
model
.
_metrics
:
# cut off padding value.
...
...
@@ -602,10 +583,8 @@ class DynamicGraphAdapter(object):
samples
=
outputs
[
0
].
shape
[
0
]
current_count
=
self
.
_merge_count
.
get
(
self
.
mode
+
'_total'
,
0
)
if
current_count
+
samples
>=
total_size
:
outputs
=
[
o
[:
total_size
-
metric
.
count
[
0
]]
for
o
in
outputs
]
labels
=
[
l
[:
total_size
-
metric
.
count
[
0
]]
for
l
in
labels
]
outputs
=
[
o
[:
total_size
-
current_count
]
for
o
in
outputs
]
labels
=
[
l
[:
total_size
-
current_count
]
for
l
in
labels
]
self
.
_merge_count
[
self
.
mode
+
'_total'
]
=
0
self
.
_merge_count
[
self
.
mode
+
'_batch'
]
=
total_size
-
current_count
...
...
@@ -614,24 +593,22 @@ class DynamicGraphAdapter(object):
self
.
_merge_count
[
self
.
mode
+
'_batch'
]
=
samples
metric_outs
=
metric
.
add_metric_op
(
to_list
(
outputs
),
labels
)
m
=
metric
.
update
(
*
[
to_numpy
(
m
)
for
m
in
to_list
(
metric_outs
)])
m
=
metric
.
update
(
*
[
to_numpy
(
m
)
for
m
in
to_list
(
metric_outs
)])
metrics
.
append
(
m
)
# To be consistent with static graph
# return empty loss if loss_function is None
return
([
to_numpy
(
l
)
for
l
in
losses
],
metrics
)
\
if
len
(
metrics
)
>
0
else
[
to_numpy
(
l
)
for
l
in
losses
]
if
len
(
metrics
)
>
0
else
[
to_numpy
(
l
)
for
l
in
losses
]
def
test
(
self
,
inputs
):
super
(
Model
,
self
.
model
).
eval
()
self
.
mode
=
'test'
inputs
=
[
to_variable
(
x
)
for
x
in
to_list
(
inputs
)]
outputs
=
self
.
model
.
forward
(
*
inputs
)
if
self
.
_nranks
>
2
:
outputs
=
[
distributed
.
_all_gather
(
o
,
self
.
_nranks
)
for
o
in
to_list
(
outputs
)
]
if
self
.
_nranks
>
1
and
isinstance
(
self
.
model
.
_place
,
fluid
.
CUDAPlace
):
outputs
=
[
_all_gather
(
o
,
self
.
_nranks
)
for
o
in
to_list
(
outputs
)]
return
[
to_numpy
(
o
)
for
o
in
to_list
(
outputs
)]
def
parameters
(
self
,
*
args
,
**
kwargs
):
...
...
@@ -714,14 +691,9 @@ class Model(fluid.dygraph.Layer):
self
.
_loss_weights
=
None
self
.
_optimizer
=
None
self
.
_device
=
None
self
.
_device_ids
=
None
self
.
_optimizer
=
None
self
.
_test_dataloader
=
None
# init multiple gpus context
self
.
_place
=
fluid
.
CUDAPlace
(
distributed
.
Env
().
dev_id
)
\
if
distributed
.
Env
().
nranks
>
1
else
fluid
.
CUDAPlace
(
0
)
# init backend
if
fluid
.
in_dygraph_mode
():
self
.
_adapter
=
DynamicGraphAdapter
(
self
)
...
...
@@ -738,7 +710,7 @@ class Model(fluid.dygraph.Layer):
return
self
.
_adapter
.
test
(
*
args
,
**
kwargs
)
def
save
(
self
,
*
args
,
**
kwargs
):
if
distributed
.
get_local_rank
()
==
0
:
if
ParallelEnv
().
local_rank
==
0
:
return
self
.
_adapter
.
save
(
*
args
,
**
kwargs
)
def
load
(
self
,
path
,
skip_mismatch
=
False
,
reset_optimizer
=
False
):
...
...
@@ -816,8 +788,7 @@ class Model(fluid.dygraph.Layer):
metrics
=
None
,
inputs
=
None
,
labels
=
None
,
device
=
None
,
device_ids
=
None
):
device
=
None
):
"""
FIXME: add comments
Args:
...
...
@@ -840,19 +811,37 @@ class Model(fluid.dygraph.Layer):
device (str|None): specify device type, 'CPU' or 'GPU'.
If None, automatically select device according to
installation package version.
device_ids (list[int]|None): specify device index. If None,
the available device will be obtained from the environment
variable when the model is executed: If the GPU is used, the
currently available device ID is obtained from the environment
variable FLAGS_selected_gpus or CUDA_VISIBLE_DEVICES when the
model is executed; CPU, when the model is executed,
the currently available CPU number is obtained from the
environment variable CPU_NUM. For example, export CPU_NUM=4,
if the environment variable is not set, the executor will add
the variable to the environment variable and set its value to 1.
The default is None.
"""
if
isinstance
(
device
,
fluid
.
CUDAPlace
)
or
\
(
isinstance
(
device
,
six
.
string_types
)
and
device
.
lower
()
==
'gpu'
)
\
or
(
device
is
None
and
fluid
.
is_compiled_with_cuda
()):
if
isinstance
(
device
,
fluid
.
CUDAPlace
):
self
.
_place
=
device
else
:
self
.
_place
=
fluid
.
CUDAPlace
(
ParallelEnv
().
dev_id
)
\
if
ParallelEnv
().
nranks
>
1
else
fluid
.
CUDAPlace
(
0
)
global
_parallel_context_initialized
if
ParallelEnv
().
nranks
>
1
and
not
_parallel_context_initialized
:
if
fluid
.
in_dygraph_mode
():
fluid
.
disable_dygraph
()
fluid
.
enable_dygraph
(
self
.
_place
)
fluid
.
dygraph
.
parallel
.
prepare_context
()
else
:
prepare_distributed_context
(
self
.
_place
)
_parallel_context_initialized
=
True
elif
isinstance
(
device
,
fluid
.
CPUPlace
):
self
.
_place
=
device
elif
(
isinstance
(
device
,
six
.
string_types
)
and
device
.
lower
()
==
'cpu'
)
\
or
(
device
is
None
):
self
.
_place
=
fluid
.
CPUPlace
()
else
:
raise
ValueError
(
"Expected device in ('gpu', 'cpu', fluid.CUDAPlace, fluid.CPUPlace, None),
\
but got {}"
.
format
(
device
))
self
.
_optimizer
=
optimizer
if
loss_function
:
if
not
isinstance
(
loss_function
,
Loss
):
...
...
@@ -869,27 +858,22 @@ class Model(fluid.dygraph.Layer):
metrics
=
metrics
or
[]
for
metric
in
to_list
(
metrics
):
assert
isinstance
(
metric
,
Metric
),
\
"{} is not sub class of Metric"
.
format
(
metric
.
__class__
.
__name__
)
"{} is not sub class of Metric"
.
format
(
metric
.
__class__
.
__name__
)
self
.
_metrics
=
to_list
(
metrics
)
self
.
_inputs
=
to_list
(
inputs
)
if
not
isinstance
(
inputs
,
dict
)
else
[
inputs
[
n
]
for
n
in
extract_args
(
self
.
forward
)
if
n
!=
'self'
]
self
.
_labels
=
to_list
(
labels
)
self
.
_device
=
device
if
device
is
None
:
self
.
_device
=
'GPU'
if
fluid
.
is_compiled_with_cuda
()
else
'CPU'
self
.
_device_ids
=
device_ids
if
not
in_dygraph_mode
():
self
.
_adapter
.
prepare
()
def
fit
(
self
,
train_dataset
=
None
,
eval_dataset
=
None
,
train_loader
=
None
,
eval_loader
=
None
,
train_data
=
None
,
eval_data
=
None
,
batch_size
=
1
,
epochs
=
1
,
eval_freq
=
1
,
...
...
@@ -904,60 +888,77 @@ class Model(fluid.dygraph.Layer):
"""
FIXME: add more comments and usage
Args:
train_loader (DataLoader): An iterable data loader is used for train.
eval_loader (DataLoader): An iterable data loader is used for
evaluation at the end of epoch. If None, will not do evaluation.
train_data (Dataset|DataLoader): An iterable data loader is used for
train. An instance of paddle.fluid.io.Dataset or
paddle.fluid.io.Dataloader is recomended.
eval_data (Dataset|DataLoader): An iterable data loader is used for
evaluation at the end of epoch. If None, will not do evaluation.
An instance of paddle.fluid.io.Dataset or paddle.fluid.io.Dataloader
is recomended.
batch_size (int): Integer number. The batch size of train_data and eval_data.
When train_data and eval_data are both the instance of Dataloader, this
parameter will be ignored.
epochs (int): Integer number. The number of epochs to train the model.
eval_freq (int): The frequency, in number of epochs, an evalutation
is performed.
log_freq (int): The frequency, in number of steps, the training logs
is
printed.
are
printed.
save_dir(str|None): The directory to save checkpoint during training.
If None, will not save checkpoint.
save_freq (int): The frequency, in number of epochs, to save checkpoint.
verbose (int): The verbosity mode, should be 0, 1, or 2.
0 = silent, 1 = progress bar, 2 = one line per epoch.
drop_last (bool): whether drop the last incomplete batch of train_data
when dataset size is not divisible by the batch size. When train_data
is an instance of Dataloader, this parameter will be ignored.
shuffle (bool): whther to shuffle train_data. When train_data is an instance
of Dataloader, this parameter will be ignored.
num_workers (int): the number of subprocess to load data, 0 for no subprocess
used and loading data in main process. When train_data and eval_data are
both the instance of Dataloader, this parameter will be ignored.
callbacks (Callback|None): A list of `Callback` instances to apply
during training. If None, `ProgBarLogger` and `ModelCheckpoint`
are automatically inserted.
"""
assert
train_dataset
is
not
None
or
train_loader
is
not
None
,
\
"train_dataset or train_loader must be given"
assert
(
train_loader
is
not
None
and
train_dataset
is
None
)
or
\
(
train_loader
is
None
and
train_dataset
is
not
None
),
\
"train_dataset should not be set when train_loader is given"
assert
train_data
is
not
None
,
\
"train_data must be given!"
if
fluid
.
in_dygraph_mode
():
feed_list
=
None
else
:
feed_list
=
[
x
.
forward
()
for
x
in
self
.
_inputs
+
self
.
_labels
]
if
train_loader
is
None
:
if
isinstance
(
train_data
,
Dataset
)
:
train_sampler
=
DistributedBatchSampler
(
train_data
set
,
train_data
,
batch_size
=
batch_size
,
shuffle
=
shuffle
,
drop_last
=
drop_last
)
train_loader
=
DataLoader
(
train_data
set
,
train_data
,
batch_sampler
=
train_sampler
,
places
=
self
.
_place
,
feed_list
=
feed_list
,
num_workers
=
num_workers
,
return_list
=
True
)
else
:
train_loader
=
train_data
if
eval_
loader
is
None
and
eval_dataset
is
not
None
:
if
eval_
data
is
not
None
and
isinstance
(
eval_data
,
Dataset
)
:
eval_sampler
=
DistributedBatchSampler
(
eval_data
set
,
batch_size
=
batch_size
)
eval_data
,
batch_size
=
batch_size
)
eval_loader
=
DataLoader
(
eval_data
set
,
eval_data
,
batch_sampler
=
eval_sampler
,
places
=
self
.
_place
,
feed_list
=
feed_list
,
num_workers
=
num_workers
,
return_list
=
True
)
elif
eval_data
is
not
None
:
eval_loader
=
eval_data
else
:
eval_loader
=
None
do_eval
=
eval_loader
is
not
None
self
.
_test_dataloader
=
eval_loader
...
...
@@ -974,84 +975,256 @@ class Model(fluid.dygraph.Layer):
verbose
=
verbose
,
metrics
=
self
.
_metrics_name
(),
)
def
_run_one_epoch
(
data_loader
,
callbacks
,
mode
):
size
=
len
(
data_loader
)
if
hasattr
(
data_loader
,
'__len__'
)
else
None
logs
=
{
'steps'
:
size
,
'metrics_name'
:
metrics_name
,
}
for
step
,
data
in
enumerate
(
data_loader
):
# data might come from different types of data_loader and have
# different format, as following:
# 1. DataLoader in static graph:
# [[input1, input2, ..., label1, lable2, ...]]
# 2. DataLoader in dygraph
# [input1, input2, ..., label1, lable2, ...]
# 3. custumed iterator yield concated inputs and labels:
# [input1, input2, ..., label1, lable2, ...]
# 4. custumed iterator yield seperated inputs and labels:
# ([input1, input2, ...], [label1, lable2, ...])
# To handle all of these, flatten (nested) list to list.
data
=
flatten
(
data
)
# LoDTensor.shape is callable, where LoDTensor comes from
# DataLoader in static graph
batch_size
=
data
[
0
].
shape
()[
0
]
if
callable
(
data
[
0
].
shape
)
else
data
[
0
].
shape
[
0
]
cbks
.
on_batch_begin
(
mode
,
step
,
logs
)
if
mode
==
'train'
:
outs
=
self
.
train
(
data
[:
len
(
self
.
_inputs
)],
data
[
len
(
self
.
_inputs
):])
else
:
outs
=
self
.
eval
(
data
[:
len
(
self
.
_inputs
)],
data
[
len
(
self
.
_inputs
):])
# losses
loss
=
outs
[
0
]
if
self
.
_metrics
else
outs
metrics
=
[[
l
[
0
]
for
l
in
loss
]]
# metrics
for
metric
in
self
.
_metrics
:
res
=
metric
.
accumulate
()
metrics
.
extend
(
to_list
(
res
))
assert
len
(
metrics_name
)
==
len
(
metrics
)
for
k
,
v
in
zip
(
metrics_name
,
metrics
):
logs
[
k
]
=
v
logs
[
'step'
]
=
step
if
mode
==
'train'
or
self
.
_adapter
.
_merge_count
.
get
(
mode
+
'_batch'
,
0
)
<=
0
:
logs
[
'batch_size'
]
=
batch_size
*
distributed
.
Env
().
nranks
else
:
logs
[
'batch_size'
]
=
self
.
_adapter
.
_merge_count
[
mode
+
'_batch'
]
cbks
.
on_batch_end
(
mode
,
step
,
logs
)
self
.
_reset_metrics
()
return
logs
cbks
.
on_begin
(
'train'
)
for
epoch
in
range
(
epochs
):
cbks
.
on_epoch_begin
(
epoch
)
# FIXME: adapt to DataLoader
loader
=
train_loader
if
not
isinstance
(
train_loader
,
Iterable
):
loader
=
train_loader
()
logs
=
_run_one_epoch
(
loader
,
cbks
,
'train'
)
cbks
.
on_epoch_end
(
epoch
,
logs
)
logs
=
self
.
_run_one_epoch
(
loader
,
cbks
,
'train'
,
metrics_name
,
epoch
=
epoch
)
if
do_eval
and
epoch
%
eval_freq
==
0
:
cbks
.
on_begin
(
'eval'
,
logs
)
# FIXME: adapt to DataLoader
loader
=
eval_loader
if
not
isinstance
(
eval_loader
,
Iterable
):
loader
=
eval_loader
()
logs
=
_run_one_epoch
(
eval_loader
(),
cbks
,
'eval'
)
eval_steps
=
len
(
loader
)
if
hasattr
(
loader
,
'__len__'
)
else
None
cbks
.
on_begin
(
'eval'
,
{
'steps'
:
eval_steps
,
'metrics_name'
:
metrics_name
})
logs
=
self
.
_run_one_epoch
(
loader
,
cbks
,
'eval'
,
metrics_name
)
cbks
.
on_end
(
'eval'
,
logs
)
cbks
.
on_end
(
'train'
,
logs
)
self
.
_test_dataloader
=
None
def
evaluate
(
self
,
eval_data
,
batch_size
=
1
,
log_freq
=
10
,
verbose
=
2
,
num_workers
=
0
,
callbacks
=
None
,
):
"""
FIXME: add more comments and usage
Args:
eval_data (Dataset|DataLoader): An iterable data loader is used for
evaluation. An instance of paddle.fluid.io.Dataset or
paddle.fluid.io.Dataloader is recomended.
batch_size (int): Integer number. The batch size of train_data and eval_data.
When train_data and eval_data are both the instance of Dataloader, this
parameter will be ignored.
log_freq (int): The frequency, in number of steps, the eval logs
are printed.
verbose (int): The verbosity mode, should be 0, 1, or 2.
0 = silent, 1 = progress bar, 2 = one line per epoch.
num_workers (int): The number of subprocess to load data, 0 for no subprocess
used and loading data in main process. When train_data and eval_data are
both the instance of Dataloader, this parameter will be ignored.
callbacks (Callback|None): A list of `Callback` instances to apply
during training. If None, `ProgBarLogger` and `ModelCheckpoint`
are automatically inserted.
"""
if
fluid
.
in_dygraph_mode
():
feed_list
=
None
else
:
feed_list
=
[
x
.
forward
()
for
x
in
self
.
_inputs
+
self
.
_labels
]
if
eval_data
is
not
None
and
isinstance
(
eval_data
,
Dataset
):
eval_sampler
=
DistributedBatchSampler
(
eval_data
,
batch_size
=
batch_size
)
eval_loader
=
DataLoader
(
eval_data
,
batch_sampler
=
eval_sampler
,
places
=
self
.
_place
,
feed_list
=
feed_list
,
num_workers
=
num_workers
,
return_list
=
True
)
else
:
eval_loader
=
eval_data
self
.
_test_dataloader
=
eval_loader
metrics_name
=
self
.
_metrics_name
()
cbks
=
config_callbacks
(
callbacks
,
model
=
self
,
log_freq
=
log_freq
,
verbose
=
verbose
,
metrics
=
self
.
_metrics_name
(),
)
loader
=
eval_loader
if
not
isinstance
(
eval_loader
,
Iterable
):
loader
=
eval_loader
()
eval_steps
=
len
(
loader
)
if
hasattr
(
loader
,
'__len__'
)
else
None
cbks
.
on_begin
(
'eval'
,
{
'steps'
:
eval_steps
,
'metrics_name'
:
metrics_name
})
logs
=
self
.
_run_one_epoch
(
loader
,
cbks
,
'eval'
,
metrics_name
)
cbks
.
on_end
(
'eval'
,
logs
)
self
.
_test_dataloader
=
None
eval_result
=
{}
for
k
in
self
.
_metrics_name
():
eval_result
[
k
]
=
logs
[
k
]
return
eval_result
def
predict
(
self
,
test_data
,
batch_size
=
1
,
num_workers
=
0
):
"""
FIXME: add more comments and usage
Args:
test_data (Dataset|DataLoader): An iterable data loader is used for
predict. An instance of paddle.fluid.io.Dataset or paddle.fluid.io.Dataloader
is recomended.
batch_size (int): Integer number. The batch size of train_data and eval_data.
When train_data and eval_data are both the instance of Dataloader, this
parameter will be ignored.
num_workers (int): the number of subprocess to load data, 0 for no subprocess
used and loading data in main process. When train_data and eval_data are
both the instance of Dataloader, this parameter will be ignored.
"""
if
fluid
.
in_dygraph_mode
():
feed_list
=
None
else
:
feed_list
=
[
x
.
forward
()
for
x
in
self
.
_inputs
+
self
.
_labels
]
if
test_data
is
not
None
and
isinstance
(
test_data
,
Dataset
):
test_sampler
=
DistributedBatchSampler
(
test_data
,
batch_size
=
batch_size
)
test_loader
=
DataLoader
(
test_data
,
batch_sampler
=
test_sampler
,
places
=
self
.
_place
,
feed_list
=
feed_list
,
num_workers
=
num_workers
,
return_list
=
True
)
else
:
test_loader
=
test_data
self
.
_test_dataloader
=
test_loader
loader
=
test_loader
if
not
isinstance
(
test_loader
,
Iterable
):
loader
=
test_loader
()
outputs
=
None
for
data
in
tqdm
.
tqdm
(
loader
):
if
not
fluid
.
in_dygraph_mode
():
data
=
data
[
0
]
outs
=
self
.
test
(
*
data
)
if
outputs
is
None
:
outputs
=
outs
else
:
outputs
=
[
np
.
vstack
([
x
,
outs
[
i
]])
for
i
,
x
in
enumerate
(
outputs
)
]
self
.
_test_dataloader
=
None
if
test_loader
is
not
None
and
self
.
_adapter
.
_nranks
>
1
\
and
isinstance
(
test_loader
,
DataLoader
):
outputs
=
[
o
[:
len
(
test_loader
.
dataset
)]
for
o
in
outputs
]
return
outputs
def
set_eval_data
(
self
,
eval_data
):
"""
Args:
eval_data (Dataset|DataLoader|None): An iterable data loader is used for
eval. An instance of paddle.fluid.io.Dataset or
paddle.fluid.io.Dataloader is recomended.
"""
assert
isinstance
(
eval_data
,
DataLoader
),
"eval_data must be a instance of Dataloader!"
self
.
_test_dataloader
=
eval_data
def
_run_one_epoch
(
self
,
data_loader
,
callbacks
,
mode
,
metrics_name
,
epoch
=
None
):
size
=
len
(
data_loader
)
if
hasattr
(
data_loader
,
'__len__'
)
else
None
logs
=
{
'steps'
:
size
,
'metrics_name'
:
metrics_name
,
}
if
mode
==
'train'
:
assert
epoch
is
not
None
,
'when mode is train, epoch must be given'
callbacks
.
on_epoch_begin
(
epoch
)
for
step
,
data
in
enumerate
(
data_loader
):
# data might come from different types of data_loader and have
# different format, as following:
# 1. DataLoader in static graph:
# [[input1, input2, ..., label1, lable2, ...]]
# 2. DataLoader in dygraph
# [input1, input2, ..., label1, lable2, ...]
# 3. custumed iterator yield concated inputs and labels:
# [input1, input2, ..., label1, lable2, ...]
# 4. custumed iterator yield seperated inputs and labels:
# ([input1, input2, ...], [label1, lable2, ...])
# To handle all of these, flatten (nested) list to list.
data
=
flatten
(
data
)
# LoDTensor.shape is callable, where LoDTensor comes from
# DataLoader in static graph
batch_size
=
data
[
0
].
shape
()[
0
]
if
callable
(
data
[
0
].
shape
)
else
data
[
0
].
shape
[
0
]
callbacks
.
on_batch_begin
(
mode
,
step
,
logs
)
if
mode
==
'train'
:
outs
=
self
.
train
(
data
[:
len
(
self
.
_inputs
)],
data
[
len
(
self
.
_inputs
):])
else
:
outs
=
self
.
eval
(
data
[:
len
(
self
.
_inputs
)],
data
[
len
(
self
.
_inputs
):])
# losses
loss
=
outs
[
0
]
if
self
.
_metrics
else
outs
metrics
=
[[
l
[
0
]
for
l
in
loss
]]
# metrics
for
metric
in
self
.
_metrics
:
res
=
metric
.
accumulate
()
metrics
.
extend
(
to_list
(
res
))
assert
len
(
metrics_name
)
==
len
(
metrics
)
for
k
,
v
in
zip
(
metrics_name
,
metrics
):
logs
[
k
]
=
v
logs
[
'step'
]
=
step
if
mode
==
'train'
or
self
.
_adapter
.
_merge_count
.
get
(
mode
+
'_batch'
,
0
)
<=
0
:
logs
[
'batch_size'
]
=
batch_size
*
ParallelEnv
().
nranks
else
:
logs
[
'batch_size'
]
=
self
.
_adapter
.
_merge_count
[
mode
+
'_batch'
]
callbacks
.
on_batch_end
(
mode
,
step
,
logs
)
self
.
_reset_metrics
()
if
mode
==
'train'
:
assert
epoch
is
not
None
,
'when mode is train, epoch must be given'
callbacks
.
on_epoch_end
(
epoch
)
return
logs
def
_reset_metrics
(
self
):
for
metric
in
self
.
_metrics
:
...
...
tests/test_model.py
浏览文件 @
863897ce
...
...
@@ -28,7 +28,7 @@ import contextlib
import
paddle
from
paddle
import
fluid
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
Linear
from
model
import
Model
,
CrossEntropy
,
Input
,
Loss
,
init_context
from
model
import
Model
,
CrossEntropy
,
Input
,
Loss
,
set_device
from
metrics
import
Accuracy
from
callbacks
import
ProgBarLogger
from
paddle.fluid.io
import
BatchSampler
,
DataLoader
...
...
@@ -139,9 +139,30 @@ class MyCrossEntropy(Loss):
return
[
loss1
,
loss2
]
class
TestMnistDataset
(
MnistDataset
):
def
__init__
(
self
):
super
(
TestMnistDataset
,
self
).
__init__
(
mode
=
'test'
)
def
__getitem__
(
self
,
idx
):
return
self
.
images
[
idx
],
def
__len__
(
self
):
return
len
(
self
.
images
)
def
get_predict_accuracy
(
pred
,
gt
):
pred
=
np
.
argmax
(
pred
,
-
1
)
gt
=
np
.
array
(
gt
)
correct
=
pred
[:,
np
.
newaxis
]
==
gt
return
np
.
sum
(
correct
)
/
correct
.
shape
[
0
]
class
TestModel
(
unittest
.
TestCase
):
def
fit
(
self
,
dynamic
,
is_mlp
=
False
):
init_context
(
'dynamic'
if
dynamic
else
'static'
)
device
=
set_device
(
'gpu'
)
fluid
.
enable_dygraph
(
device
)
if
dynamic
else
None
im_shape
=
(
-
1
,
784
)
batch_size
=
128
...
...
@@ -151,19 +172,31 @@ class TestModel(unittest.TestCase):
train_dataset
=
MnistDataset
(
mode
=
'train'
)
val_dataset
=
MnistDataset
(
mode
=
'test'
)
test_dataset
=
TestMnistDataset
()
model
=
MNIST
()
if
not
is_mlp
else
MLP
()
optim
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
0.01
,
momentum
=
.
9
,
parameter_list
=
model
.
parameters
())
loss
=
CrossEntropy
()
if
not
is_mlp
else
MyCrossEntropy
()
model
.
prepare
(
optim
,
loss
,
Accuracy
(),
inputs
,
labels
)
model
.
prepare
(
optim
,
loss
,
Accuracy
(),
inputs
,
labels
,
device
=
device
)
cbk
=
ProgBarLogger
(
50
)
model
.
fit
(
train_dataset
,
val_dataset
,
epochs
=
2
,
batch_size
=
batch_size
,
callbacks
=
cbk
)
eval_result
=
model
.
evaluate
(
val_dataset
,
batch_size
=
batch_size
)
output
=
model
.
predict
(
test_dataset
,
batch_size
=
batch_size
)
np
.
testing
.
assert_equal
(
output
[
0
].
shape
[
0
],
len
(
test_dataset
))
acc
=
get_predict_accuracy
(
output
[
0
],
val_dataset
.
labels
)
np
.
testing
.
assert_allclose
(
acc
,
eval_result
[
'acc'
])
def
test_fit_static
(
self
):
self
.
fit
(
False
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录