Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
hapi
提交
0cb1d4e1
H
hapi
项目概览
PaddlePaddle
/
hapi
通知
11
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
4
列表
看板
标记
里程碑
合并请求
7
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
H
hapi
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
4
Issue
4
列表
看板
标记
里程碑
合并请求
7
合并请求
7
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0cb1d4e1
编写于
5月 24, 2020
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix yolov3
上级
10f48e0d
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
62 addition
and
344 deletion
+62
-344
examples/yolov3/darknet.py
examples/yolov3/darknet.py
+56
-76
examples/yolov3/main.py
examples/yolov3/main.py
+1
-1
examples/yolov3/modeling.py
examples/yolov3/modeling.py
+5
-8
hapi/vision/models/__init__.py
hapi/vision/models/__init__.py
+0
-3
hapi/vision/models/darknet.py
hapi/vision/models/darknet.py
+0
-256
未找到文件。
examples/yolov3/darknet.py
浏览文件 @
0cb1d4e1
...
...
@@ -12,12 +12,11 @@
#See the License for the specific language governing permissions and
#limitations under the License.
import
math
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.regularizer
import
L2Decay
from
paddle.fluid.dygraph.nn
import
Conv2D
,
BatchNorm
,
Pool2D
,
Linear
from
paddle.fluid.dygraph.nn
import
Conv2D
,
BatchNorm
from
paddle.incubate.hapi.model
import
Model
from
paddle.incubate.hapi.download
import
get_weights_path_from_url
...
...
@@ -25,10 +24,9 @@ from paddle.incubate.hapi.download import get_weights_path_from_url
__all__
=
[
'DarkNet'
,
'darknet53'
]
# {num_layers: (url, md5)}
model_urls
=
{
'darknet53'
:
(
'https://paddle-hapi.bj.bcebos.com/models/darknet53.pdparams'
,
'ca506a90e2efecb9a2093f8ada808708'
)
pretrain_infos
=
{
53
:
(
'https://paddlemodels.bj.bcebos.com/hapi/darknet53.pdparams'
,
'2506357a5c31e865785112fc614a487d'
)
}
...
...
@@ -68,14 +66,17 @@ class ConvBNLayer(fluid.dygraph.Layer):
def
forward
(
self
,
inputs
):
out
=
self
.
conv
(
inputs
)
out
=
self
.
batch_norm
(
out
)
if
self
.
act
==
'leaky'
:
out
=
fluid
.
layers
.
leaky_relu
(
x
=
out
,
alpha
=
0.1
)
return
out
class
DownSample
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
ch_in
,
ch_out
,
filter_size
=
3
,
stride
=
2
,
padding
=
1
):
def
__init__
(
self
,
ch_in
,
ch_out
,
filter_size
=
3
,
stride
=
2
,
padding
=
1
):
super
(
DownSample
,
self
).
__init__
()
...
...
@@ -86,45 +87,46 @@ class DownSample(fluid.dygraph.Layer):
stride
=
stride
,
padding
=
padding
)
self
.
ch_out
=
ch_out
def
forward
(
self
,
inputs
):
out
=
self
.
conv_bn_layer
(
inputs
)
return
out
class
BasicBlock
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
ch_in
,
ch_out
):
super
(
BasicBlock
,
self
).
__init__
()
self
.
conv1
=
ConvBNLayer
(
ch_in
=
ch_in
,
ch_out
=
ch_out
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
)
ch_in
=
ch_in
,
ch_out
=
ch_out
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
)
self
.
conv2
=
ConvBNLayer
(
ch_in
=
ch_out
,
ch_out
=
ch_out
*
2
,
ch_out
=
ch_out
*
2
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
)
def
forward
(
self
,
inputs
):
conv1
=
self
.
conv1
(
inputs
)
conv2
=
self
.
conv2
(
conv1
)
out
=
fluid
.
layers
.
elementwise_add
(
x
=
inputs
,
y
=
conv2
,
act
=
None
)
return
out
class
LayerWarp
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
ch_in
,
ch_out
,
count
):
super
(
LayerWarp
,
self
).
__init__
()
super
(
LayerWarp
,
self
).
__init__
()
self
.
basicblock0
=
BasicBlock
(
ch_in
,
ch_out
)
self
.
res_out_list
=
[]
for
i
in
range
(
1
,
count
):
for
i
in
range
(
1
,
count
):
res_out
=
self
.
add_sublayer
(
"basic_block_%d"
%
(
i
),
BasicBlock
(
ch_out
*
2
,
ch_out
))
BasicBlock
(
ch_out
*
2
,
ch_out
))
self
.
res_out_list
.
append
(
res_out
)
self
.
ch_out
=
ch_out
def
forward
(
self
,
inputs
):
def
forward
(
self
,
inputs
):
y
=
self
.
basicblock0
(
inputs
)
for
basic_block_i
in
self
.
res_out_list
:
y
=
basic_block_i
(
y
)
...
...
@@ -140,100 +142,78 @@ class DarkNet(Model):
Args:
num_layers (int): layer number of DarkNet, only 53 supported currently, default: 53.
num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer
will not be defined. Default: 1000.
with_pool (bool): use pool before the last fc layer or not. Default: True.
classifier_activation (str): activation for the last fc layer. Default: 'softmax'.
ch_in (int): channel number of input data, default 3.
"""
def
__init__
(
self
,
num_layers
=
53
,
num_classes
=
1000
,
with_pool
=
True
,
classifier_activation
=
'softmax'
):
def
__init__
(
self
,
num_layers
=
53
,
ch_in
=
3
):
super
(
DarkNet
,
self
).
__init__
()
assert
num_layers
in
DarkNet_cfg
.
keys
(),
\
"only support num_layers in {} currently"
\
.
format
(
DarkNet_cfg
.
keys
())
self
.
stages
=
DarkNet_cfg
[
num_layers
]
self
.
stages
=
self
.
stages
[
0
:
5
]
self
.
num_classes
=
num_classes
self
.
with_pool
=
True
ch_in
=
3
self
.
conv0
=
ConvBNLayer
(
ch_in
=
ch_in
,
ch_out
=
32
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
)
ch_in
=
ch_in
,
ch_out
=
32
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
)
self
.
downsample0
=
DownSample
(
ch_in
=
32
,
ch_out
=
32
*
2
)
self
.
downsample0
=
DownSample
(
ch_in
=
32
,
ch_out
=
32
*
2
)
self
.
darknet53_conv_block_list
=
[]
self
.
downsample_list
=
[]
ch_in
=
[
64
,
128
,
256
,
512
,
1024
]
ch_in
=
[
64
,
128
,
256
,
512
,
1024
]
for
i
,
stage
in
enumerate
(
self
.
stages
):
conv_block
=
self
.
add_sublayer
(
"stage_%d"
%
(
i
),
conv_block
=
self
.
add_sublayer
(
"stage_%d"
%
(
i
),
LayerWarp
(
int
(
ch_in
[
i
]),
32
*
(
2
**
i
),
int
(
ch_in
[
i
]),
32
*
(
2
**
i
),
stage
))
self
.
darknet53_conv_block_list
.
append
(
conv_block
)
for
i
in
range
(
len
(
self
.
stages
)
-
1
):
downsample
=
self
.
add_sublayer
(
"stage_%d_downsample"
%
i
,
DownSample
(
ch_in
=
32
*
(
2
**
(
i
+
1
)),
ch_out
=
32
*
(
2
**
(
i
+
2
))))
ch_in
=
32
*
(
2
**
(
i
+
1
)),
ch_out
=
32
*
(
2
**
(
i
+
2
))))
self
.
downsample_list
.
append
(
downsample
)
if
self
.
with_pool
:
self
.
global_pool
=
Pool2D
(
pool_size
=
7
,
pool_type
=
'avg'
,
global_pooling
=
True
)
if
self
.
num_classes
>
0
:
stdv
=
1.0
/
math
.
sqrt
(
32
*
(
2
**
(
i
+
2
)))
self
.
fc_input_dim
=
32
*
(
2
**
(
i
+
2
))
self
.
fc
=
Linear
(
self
.
fc_input_dim
,
num_classes
,
act
=
'softmax'
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
)))
def
forward
(
self
,
inputs
):
def
forward
(
self
,
inputs
):
out
=
self
.
conv0
(
inputs
)
out
=
self
.
downsample0
(
out
)
blocks
=
[]
for
i
,
conv_block_i
in
enumerate
(
self
.
darknet53_conv_block_list
):
out
=
conv_block_i
(
out
)
blocks
.
append
(
out
)
if
i
<
len
(
self
.
stages
)
-
1
:
out
=
self
.
downsample_list
[
i
](
out
)
if
self
.
with_pool
:
out
=
self
.
global_pool
(
out
)
if
self
.
num_classes
>
0
:
out
=
fluid
.
layers
.
reshape
(
out
,
shape
=
[
-
1
,
self
.
fc_input_dim
])
out
=
self
.
fc
(
out
)
return
out
return
blocks
[
-
1
:
-
4
:
-
1
]
def
_darknet
(
arch
,
num_layers
=
53
,
pretrained
=
False
,
**
kwargs
):
model
=
DarkNet
(
num_layers
,
**
kwarg
s
)
def
_darknet
(
num_layers
=
53
,
input_channels
=
3
,
pretrained
=
True
):
model
=
DarkNet
(
num_layers
,
input_channel
s
)
if
pretrained
:
assert
arch
in
model_urls
,
"{} model do not have a pretrained model now, you should set pretrained=False"
.
format
(
arch
)
weight_path
=
get_weights_path_from_url
(
*
(
model_urls
[
arch
]))
assert
num_layers
in
pretrain_infos
.
keys
(),
\
"DarkNet{} do not have pretrained weights now, "
\
"pretrained should be set as False"
.
format
(
num_layers
)
weight_path
=
get_weights_path_from_url
(
*
(
pretrain_infos
[
num_layers
]))
assert
weight_path
.
endswith
(
'.pdparams'
),
\
"suffix of weight must be .pdparams"
model
.
load
(
weight_path
)
model
.
load
(
weight_path
[:
-
9
]
)
return
model
def
darknet53
(
pretrained
=
False
,
**
kwargs
):
def
darknet53
(
input_channels
=
3
,
pretrained
=
True
):
"""DarkNet 53-layer model
Args:
input_channels (bool): channel number of input data, default 3.
pretrained (bool): If True, returns a model pre-trained on ImageNet,
default True.
"""
return
_darknet
(
'darknet53'
,
53
,
pretrained
,
**
kwargs
)
return
_darknet
(
53
,
input_channels
,
pretrained
)
examples/yolov3/main.py
浏览文件 @
0cb1d4e1
...
...
@@ -215,7 +215,7 @@ if __name__ == '__main__':
metavar
=
'LR'
,
help
=
'initial learning rate'
)
parser
.
add_argument
(
"-b"
,
"--batch_size"
,
default
=
8
,
type
=
int
,
help
=
"batch size"
)
"-b"
,
"--batch_size"
,
default
=
16
,
type
=
int
,
help
=
"batch size"
)
parser
.
add_argument
(
"-j"
,
"--num_workers"
,
...
...
examples/yolov3/modeling.py
浏览文件 @
0cb1d4e1
...
...
@@ -20,9 +20,9 @@ from paddle.fluid.dygraph.nn import Conv2D, BatchNorm
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.regularizer
import
L2Decay
from
hapi.model
import
Model
from
hapi.loss
import
Loss
from
hapi.download
import
get_weights_path_from_url
from
paddle.incubate.
hapi.model
import
Model
from
paddle.incubate.
hapi.loss
import
Loss
from
paddle.incubate.
hapi.download
import
get_weights_path_from_url
from
darknet
import
darknet53
__all__
=
[
'YoloLoss'
,
'YOLOv3'
,
'yolov3_darknet53'
]
...
...
@@ -158,10 +158,7 @@ class YOLOv3(Model):
self
.
nms_posk
=
100
self
.
draw_thresh
=
0.5
self
.
backbone
=
darknet53
(
pretrained
=
(
model_mode
==
'train'
),
with_pool
=
False
,
num_classes
=-
1
)
self
.
backbone
=
darknet53
(
pretrained
=
(
model_mode
==
'train'
))
self
.
block_outputs
=
[]
self
.
yolo_blocks
=
[]
self
.
route_blocks
=
[]
...
...
@@ -300,7 +297,7 @@ class YoloLoss(Loss):
anchors
=
self
.
anchors
,
class_num
=
self
.
num_classes
,
ignore_thresh
=
self
.
ignore_thresh
,
use_label_smooth
=
Tru
e
)
use_label_smooth
=
Fals
e
)
loss
=
fluid
.
layers
.
reduce_mean
(
loss
)
losses
.
append
(
loss
)
downsample
//=
2
...
...
hapi/vision/models/__init__.py
浏览文件 @
0cb1d4e1
...
...
@@ -16,19 +16,16 @@ from . import resnet
from
.
import
vgg
from
.
import
mobilenetv1
from
.
import
mobilenetv2
from
.
import
darknet
from
.
import
lenet
from
.resnet
import
*
from
.mobilenetv1
import
*
from
.mobilenetv2
import
*
from
.vgg
import
*
from
.darknet
import
*
from
.lenet
import
*
__all__
=
resnet
.
__all__
\
+
vgg
.
__all__
\
+
mobilenetv1
.
__all__
\
+
mobilenetv2
.
__all__
\
+
darknet
.
__all__
\
+
lenet
.
__all__
hapi/vision/models/darknet.py
已删除
100755 → 0
浏览文件 @
10f48e0d
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import
math
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.regularizer
import
L2Decay
from
paddle.fluid.dygraph.nn
import
Conv2D
,
BatchNorm
,
Pool2D
,
Linear
from
hapi.model
import
Model
from
hapi.download
import
get_weights_path_from_url
__all__
=
[
'DarkNet'
,
'darknet53'
]
# {num_layers: (url, md5)}
model_urls
=
{
'darknet53'
:
(
'https://paddle-hapi.bj.bcebos.com/models/darknet53.pdparams'
,
'ca506a90e2efecb9a2093f8ada808708'
)
}
class
ConvBNLayer
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
ch_in
,
ch_out
,
filter_size
=
3
,
stride
=
1
,
groups
=
1
,
padding
=
0
,
act
=
"leaky"
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
conv
=
Conv2D
(
num_channels
=
ch_in
,
num_filters
=
ch_out
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
padding
,
groups
=
groups
,
param_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
0.
,
0.02
)),
bias_attr
=
False
,
act
=
None
)
self
.
batch_norm
=
BatchNorm
(
num_channels
=
ch_out
,
param_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
0.
,
0.02
),
regularizer
=
L2Decay
(
0.
)),
bias_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
0.0
),
regularizer
=
L2Decay
(
0.
)))
self
.
act
=
act
def
forward
(
self
,
inputs
):
out
=
self
.
conv
(
inputs
)
out
=
self
.
batch_norm
(
out
)
# out = fluid.layers.relu(out)
if
self
.
act
==
'leaky'
:
out
=
fluid
.
layers
.
leaky_relu
(
x
=
out
,
alpha
=
0.1
)
return
out
class
DownSample
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
ch_in
,
ch_out
,
filter_size
=
3
,
stride
=
2
,
padding
=
1
):
super
(
DownSample
,
self
).
__init__
()
self
.
conv_bn_layer
=
ConvBNLayer
(
ch_in
=
ch_in
,
ch_out
=
ch_out
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
padding
)
self
.
ch_out
=
ch_out
def
forward
(
self
,
inputs
):
out
=
self
.
conv_bn_layer
(
inputs
)
return
out
class
BasicBlock
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
ch_in
,
ch_out
):
super
(
BasicBlock
,
self
).
__init__
()
self
.
conv1
=
ConvBNLayer
(
ch_in
=
ch_in
,
ch_out
=
ch_out
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
)
self
.
conv2
=
ConvBNLayer
(
ch_in
=
ch_out
,
ch_out
=
ch_out
*
2
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
)
def
forward
(
self
,
inputs
):
conv1
=
self
.
conv1
(
inputs
)
conv2
=
self
.
conv2
(
conv1
)
out
=
fluid
.
layers
.
elementwise_add
(
x
=
inputs
,
y
=
conv2
,
act
=
None
)
return
out
class
LayerWarp
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
ch_in
,
ch_out
,
count
):
super
(
LayerWarp
,
self
).
__init__
()
self
.
basicblock0
=
BasicBlock
(
ch_in
,
ch_out
)
self
.
res_out_list
=
[]
for
i
in
range
(
1
,
count
):
res_out
=
self
.
add_sublayer
(
"basic_block_%d"
%
(
i
),
BasicBlock
(
ch_out
*
2
,
ch_out
))
self
.
res_out_list
.
append
(
res_out
)
self
.
ch_out
=
ch_out
def
forward
(
self
,
inputs
):
y
=
self
.
basicblock0
(
inputs
)
for
basic_block_i
in
self
.
res_out_list
:
y
=
basic_block_i
(
y
)
return
y
DarkNet_cfg
=
{
53
:
([
1
,
2
,
8
,
8
,
4
])}
class
DarkNet
(
Model
):
"""DarkNet model from
`"YOLOv3: An Incremental Improvement" <https://arxiv.org/abs/1804.02767>`_
Args:
num_layers (int): layer number of DarkNet, only 53 supported currently, default: 53.
num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer
will not be defined. Default: 1000.
with_pool (bool): use pool before the last fc layer or not. Default: True.
classifier_activation (str): activation for the last fc layer. Default: 'softmax'.
Examples:
.. code-block:: python
from hapi.vision.models import DarkNet
model = DarkNet()
"""
def
__init__
(
self
,
num_layers
=
53
,
num_classes
=
1000
,
with_pool
=
True
,
classifier_activation
=
'softmax'
):
super
(
DarkNet
,
self
).
__init__
()
assert
num_layers
in
DarkNet_cfg
.
keys
(),
\
"only support num_layers in {} currently"
\
.
format
(
DarkNet_cfg
.
keys
())
self
.
stages
=
DarkNet_cfg
[
num_layers
]
self
.
stages
=
self
.
stages
[
0
:
5
]
self
.
num_classes
=
num_classes
self
.
with_pool
=
True
ch_in
=
3
self
.
conv0
=
ConvBNLayer
(
ch_in
=
ch_in
,
ch_out
=
32
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
)
self
.
downsample0
=
DownSample
(
ch_in
=
32
,
ch_out
=
32
*
2
)
self
.
darknet53_conv_block_list
=
[]
self
.
downsample_list
=
[]
ch_in
=
[
64
,
128
,
256
,
512
,
1024
]
for
i
,
stage
in
enumerate
(
self
.
stages
):
conv_block
=
self
.
add_sublayer
(
"stage_%d"
%
(
i
),
LayerWarp
(
int
(
ch_in
[
i
]),
32
*
(
2
**
i
),
stage
))
self
.
darknet53_conv_block_list
.
append
(
conv_block
)
for
i
in
range
(
len
(
self
.
stages
)
-
1
):
downsample
=
self
.
add_sublayer
(
"stage_%d_downsample"
%
i
,
DownSample
(
ch_in
=
32
*
(
2
**
(
i
+
1
)),
ch_out
=
32
*
(
2
**
(
i
+
2
))))
self
.
downsample_list
.
append
(
downsample
)
if
self
.
with_pool
:
self
.
global_pool
=
Pool2D
(
pool_size
=
7
,
pool_type
=
'avg'
,
global_pooling
=
True
)
if
self
.
num_classes
>
0
:
stdv
=
1.0
/
math
.
sqrt
(
32
*
(
2
**
(
i
+
2
)))
self
.
fc_input_dim
=
32
*
(
2
**
(
i
+
2
))
self
.
fc
=
Linear
(
self
.
fc_input_dim
,
num_classes
,
act
=
'softmax'
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
)))
def
forward
(
self
,
inputs
):
out
=
self
.
conv0
(
inputs
)
out
=
self
.
downsample0
(
out
)
for
i
,
conv_block_i
in
enumerate
(
self
.
darknet53_conv_block_list
):
out
=
conv_block_i
(
out
)
if
i
<
len
(
self
.
stages
)
-
1
:
out
=
self
.
downsample_list
[
i
](
out
)
if
self
.
with_pool
:
out
=
self
.
global_pool
(
out
)
if
self
.
num_classes
>
0
:
out
=
fluid
.
layers
.
reshape
(
out
,
shape
=
[
-
1
,
self
.
fc_input_dim
])
out
=
self
.
fc
(
out
)
return
out
def
_darknet
(
arch
,
num_layers
=
53
,
pretrained
=
False
,
**
kwargs
):
model
=
DarkNet
(
num_layers
,
**
kwargs
)
if
pretrained
:
assert
arch
in
model_urls
,
"{} model do not have a pretrained model now, you should set pretrained=False"
.
format
(
arch
)
weight_path
=
get_weights_path_from_url
(
*
(
model_urls
[
arch
]))
assert
weight_path
.
endswith
(
'.pdparams'
),
\
"suffix of weight must be .pdparams"
model
.
load
(
weight_path
)
return
model
def
darknet53
(
pretrained
=
False
,
**
kwargs
):
"""DarkNet 53-layer model
Args:
input_channels (bool): channel number of input data, default 3.
pretrained (bool): If True, returns a model pre-trained on ImageNet,
default True.
Examples:
.. code-block:: python
from hapi.vision.models import darknet53
# build model
model = darknet53()
#build model and load imagenet pretrained weight
model = darknet53(pretrained=True)
"""
return
_darknet
(
'darknet53'
,
53
,
pretrained
,
**
kwargs
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录