eval.py 3.8 KB
Newer Older
H
huangjun12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#  Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import argparse
import os
import sys
import logging
import paddle.fluid as fluid

21 22
from hapi.model import set_device, Input
from hapi.vision.models import BMN, BmnLoss
H
huangjun12 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
from bmn_metric import BmnMetric
from reader import BmnDataset
from config_utils import *

DATATYPE = 'float32'

logging.root.handlers = []
FORMAT = '[%(levelname)s: %(filename)s: %(lineno)4d]: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT, stream=sys.stdout)
logger = logging.getLogger(__name__)


def parse_args():
    parser = argparse.ArgumentParser("BMN test for performance evaluation.")
    parser.add_argument(
        "-d",
        "--dynamic",
        default=True,
        action='store_true',
        help="enable dygraph mode, only support dynamic mode at present time")
    parser.add_argument(
        '--config_file',
        type=str,
        default='bmn.yaml',
        help='path to config file of model')
    parser.add_argument(
        '--device',
        type=str,
        default='gpu',
        help='gpu or cpu, default use gpu.')
    parser.add_argument(
        '--weights',
        type=str,
        default="checkpoint/final",
        help='weight path, None to automatically download weights provided by Paddle.'
    )
    parser.add_argument(
        '--log_interval',
        type=int,
        default=1,
        help='mini-batch interval to log.')
    args = parser.parse_args()
    return args


# Performance Evaluation
def test_bmn(args):
    # only support dynamic mode at present time
    device = set_device(args.device)
    fluid.enable_dygraph(device) if args.dynamic else None

    config = parse_config(args.config_file)
    eval_cfg = merge_configs(config, 'test', vars(args))
    if not os.path.isdir(config.TEST.output_path):
        os.makedirs(config.TEST.output_path)
    if not os.path.isdir(config.TEST.result_path):
        os.makedirs(config.TEST.result_path)

    inputs = [
        Input(
            [None, config.MODEL.feat_dim, config.MODEL.tscale],
            'float32',
            name='feat_input')
    ]
    gt_iou_map = Input(
        [None, config.MODEL.dscale, config.MODEL.tscale],
        'float32',
        name='gt_iou_map')
    gt_start = Input([None, config.MODEL.tscale], 'float32', name='gt_start')
    gt_end = Input([None, config.MODEL.tscale], 'float32', name='gt_end')
    video_idx = Input([None, 1], 'int64', name='video_idx')
    labels = [gt_iou_map, gt_start, gt_end, video_idx]

    #data
    eval_dataset = BmnDataset(eval_cfg, 'test')

    #model
    model = BMN(config, args.dynamic)
    model.prepare(
        loss_function=BmnLoss(config),
        metrics=BmnMetric(
            config, mode='test'),
        inputs=inputs,
        labels=labels,
        device=device)

    #load checkpoint
    if args.weights:
        assert os.path.exists(args.weights + '.pdparams'), \
            "Given weight dir {} not exist.".format(args.weights)
    logger.info('load test weights from {}'.format(args.weights))
    model.load(args.weights)

    model.evaluate(
        eval_data=eval_dataset,
        batch_size=eval_cfg.TEST.batch_size,
        num_workers=eval_cfg.TEST.num_workers,
        log_freq=args.log_interval)

    logger.info("[EVAL] eval finished")


if __name__ == '__main__':
    args = parse_args()
    test_bmn(args)