infer.py 4.4 KB
Newer Older
D
dengkaipeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import print_function

import os
import argparse
import numpy as np
from PIL import Image 

from paddle import fluid
from paddle.fluid.optimizer import Momentum
D
dengkaipeng 已提交
25
from paddle.io import DataLoader
D
dengkaipeng 已提交
26

27 28 29
from hapi.model import Model, Input, set_device
from hapi.vision.models import yolov3_darknet53, YoloLoss
from hapi.vision.transforms import *
D
dengkaipeng 已提交
30

D
dengkaipeng 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
from visualizer import draw_bbox

import logging
logger = logging.getLogger(__name__)

IMAGE_MEAN = [0.485, 0.456, 0.406]
IMAGE_STD = [0.229, 0.224, 0.225]


def get_save_image_name(output_dir, image_path):
    """
    Get save image name from source image path.
    """
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    image_name = os.path.split(image_path)[-1]
    name, ext = os.path.splitext(image_name)
    return os.path.join(output_dir, "{}".format(name)) + ext


def load_labels(label_list, with_background=True):
    idx = int(with_background)
    cat2name = {}
    with open(label_list) as f:
        for line in f.readlines():
            line = line.strip()
            if line:
                cat2name[idx] = line
                idx += 1
    return cat2name


def main():
    device = set_device(FLAGS.device)
    fluid.enable_dygraph(device) if FLAGS.dynamic else None
    
67 68
    inputs = [Input([None, 1], 'int64', name='img_id'),
              Input([None, 2], 'int32', name='img_shape'),
D
dengkaipeng 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
              Input([None, 3, None, None], 'float32', name='image')]

    cat2name = load_labels(FLAGS.label_list, with_background=False)

    model = yolov3_darknet53(num_classes=len(cat2name),
                             model_mode='test',
                             pretrained=FLAGS.weights is None)

    model.prepare(inputs=inputs, device=FLAGS.device)

    if FLAGS.weights is not None:
        model.load(FLAGS.weights, reset_optimizer=True)

    # image preprocess
    orig_img = Image.open(FLAGS.infer_image).convert('RGB')
    w, h  = orig_img.size
    img = orig_img.resize((608, 608), Image.BICUBIC)
    img = np.array(img).astype('float32') / 255.0
    img -= np.array(IMAGE_MEAN)
    img /= np.array(IMAGE_STD)
    img = img.transpose((2, 0, 1))[np.newaxis, :]
90 91
    img_id = np.array([0]).astype('int64')[np.newaxis, :]
    img_shape = np.array([h, w]).astype('int32')[np.newaxis, :]
D
dengkaipeng 已提交
92

93
    _, bboxes = model.test([img_id, img_shape, img])
D
dengkaipeng 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

    vis_img = draw_bbox(orig_img, cat2name, bboxes, FLAGS.draw_threshold)
    save_name = get_save_image_name(FLAGS.output_dir, FLAGS.infer_image)
    logger.info("Detection bbox results save in {}".format(save_name))
    vis_img.save(save_name, quality=95)


if __name__ == '__main__':
    parser = argparse.ArgumentParser("Yolov3 Training on VOC")
    parser.add_argument(
        "--device", type=str, default='gpu', help="device to use, gpu or cpu")
    parser.add_argument(
        "-d", "--dynamic", action='store_true', help="enable dygraph mode")
    parser.add_argument(
        "--label_list", type=str, default=None,
        help="path to category label list file")
    parser.add_argument(
        "-t", "--draw_threshold", type=float, default=0.5,
        help="threshold to reserve the result for visualization")
    parser.add_argument(
        "-i", "--infer_image", type=str, default=None,
        help="image path for inference")
    parser.add_argument(
        "-o", "--output_dir", type=str, default='output',
        help="directory to save inference result if --visualize is set")
    parser.add_argument(
        "-w", "--weights", default=None, type=str,
        help="path to weights for inference")
    FLAGS = parser.parse_args()
    assert os.path.isfile(FLAGS.infer_image), \
            "infer_image {} not a file".format(FLAGS.infer_image)
    assert os.path.isfile(FLAGS.label_list), \
            "label_list {} not a file".format(FLAGS.label_list)
    main()