mobilenetv1.py 9.0 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.initializer import MSRA
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear

from model import Model
from .download import get_weights_path

L
LielinJiang 已提交
25
__all__ = ['MobileNetV1', 'mobilenet_v1']
L
LielinJiang 已提交
26

L
LielinJiang 已提交
27 28 29 30 31
model_urls = {
    'mobilenetv1_1.0':
    ('https://paddle-hapi.bj.bcebos.com/models/mobilenet_v1_x1.0.pdparams',
     'bf0d25cb0bed1114d9dac9384ce2b4a6')
}
L
LielinJiang 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108


class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 filter_size,
                 num_filters,
                 stride,
                 padding,
                 channels=None,
                 num_groups=1,
                 act='relu',
                 use_cudnn=True,
                 name=None):
        super(ConvBNLayer, self).__init__()

        self._conv = Conv2D(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            groups=num_groups,
            act=None,
            use_cudnn=use_cudnn,
            param_attr=ParamAttr(
                initializer=MSRA(), name=self.full_name() + "_weights"),
            bias_attr=False)

        self._batch_norm = BatchNorm(
            num_filters,
            act=act,
            param_attr=ParamAttr(name=self.full_name() + "_bn" + "_scale"),
            bias_attr=ParamAttr(name=self.full_name() + "_bn" + "_offset"),
            moving_mean_name=self.full_name() + "_bn" + '_mean',
            moving_variance_name=self.full_name() + "_bn" + '_variance')

    def forward(self, inputs):
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y


class DepthwiseSeparable(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_filters1,
                 num_filters2,
                 num_groups,
                 stride,
                 scale,
                 name=None):
        super(DepthwiseSeparable, self).__init__()

        self._depthwise_conv = ConvBNLayer(
            num_channels=num_channels,
            num_filters=int(num_filters1 * scale),
            filter_size=3,
            stride=stride,
            padding=1,
            num_groups=int(num_groups * scale),
            use_cudnn=False)

        self._pointwise_conv = ConvBNLayer(
            num_channels=int(num_filters1 * scale),
            filter_size=1,
            num_filters=int(num_filters2 * scale),
            stride=1,
            padding=0)

    def forward(self, inputs):
        y = self._depthwise_conv(inputs)
        y = self._pointwise_conv(y)
        return y


class MobileNetV1(Model):
L
LielinJiang 已提交
109 110 111 112 113
    """MobileNetV1 model from
    `"MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications" <https://arxiv.org/abs/1704.04861>`_.

    Args:
        scale (float): scale of channels in each layer. Default: 1.0.
L
LielinJiang 已提交
114 115 116
        num_classes (int): output dim of last fc layer. Default: -1.
        with_pool (bool): use pool or not. Default: False.
        classifier_activation (str): activation for the last fc layer. Default: 'softmax'.
L
LielinJiang 已提交
117 118
    """

L
LielinJiang 已提交
119 120 121 122 123
    def __init__(self,
                 scale=1.0,
                 num_classes=-1,
                 with_pool=False,
                 classifier_activation='softmax'):
L
LielinJiang 已提交
124 125 126
        super(MobileNetV1, self).__init__()
        self.scale = scale
        self.dwsl = []
L
LielinJiang 已提交
127 128
        self.num_classes = num_classes
        self.with_pool = with_pool
L
LielinJiang 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237

        self.conv1 = ConvBNLayer(
            num_channels=3,
            filter_size=3,
            channels=3,
            num_filters=int(32 * scale),
            stride=2,
            padding=1)

        dws21 = self.add_sublayer(
            sublayer=DepthwiseSeparable(
                num_channels=int(32 * scale),
                num_filters1=32,
                num_filters2=64,
                num_groups=32,
                stride=1,
                scale=scale),
            name="conv2_1")
        self.dwsl.append(dws21)

        dws22 = self.add_sublayer(
            sublayer=DepthwiseSeparable(
                num_channels=int(64 * scale),
                num_filters1=64,
                num_filters2=128,
                num_groups=64,
                stride=2,
                scale=scale),
            name="conv2_2")
        self.dwsl.append(dws22)

        dws31 = self.add_sublayer(
            sublayer=DepthwiseSeparable(
                num_channels=int(128 * scale),
                num_filters1=128,
                num_filters2=128,
                num_groups=128,
                stride=1,
                scale=scale),
            name="conv3_1")
        self.dwsl.append(dws31)

        dws32 = self.add_sublayer(
            sublayer=DepthwiseSeparable(
                num_channels=int(128 * scale),
                num_filters1=128,
                num_filters2=256,
                num_groups=128,
                stride=2,
                scale=scale),
            name="conv3_2")
        self.dwsl.append(dws32)

        dws41 = self.add_sublayer(
            sublayer=DepthwiseSeparable(
                num_channels=int(256 * scale),
                num_filters1=256,
                num_filters2=256,
                num_groups=256,
                stride=1,
                scale=scale),
            name="conv4_1")
        self.dwsl.append(dws41)

        dws42 = self.add_sublayer(
            sublayer=DepthwiseSeparable(
                num_channels=int(256 * scale),
                num_filters1=256,
                num_filters2=512,
                num_groups=256,
                stride=2,
                scale=scale),
            name="conv4_2")
        self.dwsl.append(dws42)

        for i in range(5):
            tmp = self.add_sublayer(
                sublayer=DepthwiseSeparable(
                    num_channels=int(512 * scale),
                    num_filters1=512,
                    num_filters2=512,
                    num_groups=512,
                    stride=1,
                    scale=scale),
                name="conv5_" + str(i + 1))
            self.dwsl.append(tmp)

        dws56 = self.add_sublayer(
            sublayer=DepthwiseSeparable(
                num_channels=int(512 * scale),
                num_filters1=512,
                num_filters2=1024,
                num_groups=512,
                stride=2,
                scale=scale),
            name="conv5_6")
        self.dwsl.append(dws56)

        dws6 = self.add_sublayer(
            sublayer=DepthwiseSeparable(
                num_channels=int(1024 * scale),
                num_filters1=1024,
                num_filters2=1024,
                num_groups=1024,
                stride=1,
                scale=scale),
            name="conv6")
        self.dwsl.append(dws6)

L
LielinJiang 已提交
238 239
        if with_pool:
            self.pool2d_avg = Pool2D(pool_type='avg', global_pooling=True)
L
LielinJiang 已提交
240

L
LielinJiang 已提交
241 242 243 244 245 246 247 248
        if num_classes > -1:
            self.out = Linear(
                int(1024 * scale),
                num_classes,
                act=classifier_activation,
                param_attr=ParamAttr(
                    initializer=MSRA(), name=self.full_name() + "fc7_weights"),
                bias_attr=ParamAttr(name="fc7_offset"))
L
LielinJiang 已提交
249 250 251 252 253

    def forward(self, inputs):
        y = self.conv1(inputs)
        for dws in self.dwsl:
            y = dws(y)
L
LielinJiang 已提交
254 255 256 257

        if self.with_pool:
            y = self.pool2d_avg(y)

L
LielinJiang 已提交
258
        if self.num_classes > 0:
L
LielinJiang 已提交
259 260
            y = fluid.layers.reshape(y, shape=[-1, 1024])
            y = self.out(y)
L
LielinJiang 已提交
261 262 263 264
        return y


def _mobilenet(arch, pretrained=False, **kwargs):
L
LielinJiang 已提交
265
    model = MobileNetV1(num_classes=1000, with_pool=True, **kwargs)
L
LielinJiang 已提交
266 267 268 269 270 271 272 273 274 275 276 277
    if pretrained:
        assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format(
            arch)
        weight_path = get_weights_path(model_urls[arch][0],
                                       model_urls[arch][1])
        assert weight_path.endswith(
            '.pdparams'), "suffix of weight must be .pdparams"
        model.load(weight_path[:-9])

    return model


L
LielinJiang 已提交
278
def mobilenet_v1(pretrained=False, scale=1.0):
L
LielinJiang 已提交
279 280 281 282 283 284
    """MobileNetV1
    
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.
        scale: (float): scale of channels in each layer. Default: 1.0.
    """
L
LielinJiang 已提交
285
    model = _mobilenet('mobilenetv1_' + str(scale), pretrained, scale=scale)
L
LielinJiang 已提交
286
    return model