gen_data.sh 8.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
#! /usr/bin/env bash

set -e

OUTPUT_DIR=$PWD/gen_data

###############################################################################
# change these variables for other WMT data
###############################################################################
OUTPUT_DIR_DATA="${OUTPUT_DIR}/wmt16_ende_data"
OUTPUT_DIR_BPE_DATA="${OUTPUT_DIR}/wmt16_ende_data_bpe"
LANG1="en"
LANG2="de"
# each of TRAIN_DATA: data_url data_file_lang1 data_file_lang2
TRAIN_DATA=(
'http://www.statmt.org/europarl/v7/de-en.tgz'
'europarl-v7.de-en.en' 'europarl-v7.de-en.de'
'http://www.statmt.org/wmt13/training-parallel-commoncrawl.tgz'
'commoncrawl.de-en.en' 'commoncrawl.de-en.de'
'http://data.statmt.org/wmt16/translation-task/training-parallel-nc-v11.tgz'
'news-commentary-v11.de-en.en' 'news-commentary-v11.de-en.de'
)
# each of DEV_TEST_DATA: data_url data_file_lang1 data_file_lang2
DEV_TEST_DATA=(
'http://data.statmt.org/wmt16/translation-task/dev.tgz'
'newstest201[45]-deen-ref.en.sgm' 'newstest201[45]-deen-src.de.sgm'
'http://data.statmt.org/wmt16/translation-task/test.tgz'
'newstest2016-deen-ref.en.sgm' 'newstest2016-deen-src.de.sgm'
)
###############################################################################

###############################################################################
# change these variables for other WMT data
###############################################################################
# OUTPUT_DIR_DATA="${OUTPUT_DIR}/wmt14_enfr_data"
# OUTPUT_DIR_BPE_DATA="${OUTPUT_DIR}/wmt14_enfr_data_bpe"
# LANG1="en"
# LANG2="fr"
# # each of TRAIN_DATA: ata_url data_tgz data_file 
# TRAIN_DATA=(
# 'http://www.statmt.org/wmt13/training-parallel-commoncrawl.tgz'
# 'commoncrawl.fr-en.en' 'commoncrawl.fr-en.fr'
# 'http://www.statmt.org/wmt13/training-parallel-europarl-v7.tgz'
# 'training/europarl-v7.fr-en.en' 'training/europarl-v7.fr-en.fr'
# 'http://www.statmt.org/wmt14/training-parallel-nc-v9.tgz'
# 'training/news-commentary-v9.fr-en.en' 'training/news-commentary-v9.fr-en.fr'
# 'http://www.statmt.org/wmt10/training-giga-fren.tar'
# 'giga-fren.release2.fixed.en.*' 'giga-fren.release2.fixed.fr.*'
# 'http://www.statmt.org/wmt13/training-parallel-un.tgz'
# 'un/undoc.2000.fr-en.en' 'un/undoc.2000.fr-en.fr'
# )
# # each of DEV_TEST_DATA: data_url data_tgz data_file_lang1 data_file_lang2
# DEV_TEST_DATA=(
# 'http://data.statmt.org/wmt16/translation-task/dev.tgz'
# '.*/newstest201[45]-fren-ref.en.sgm' '.*/newstest201[45]-fren-src.fr.sgm'
# 'http://data.statmt.org/wmt16/translation-task/test.tgz'
# '.*/newstest2016-fren-ref.en.sgm' '.*/newstest2016-fren-src.fr.sgm'
# )
###############################################################################

mkdir -p $OUTPUT_DIR_DATA $OUTPUT_DIR_BPE_DATA

# Extract training data
for ((i=0;i<${#TRAIN_DATA[@]};i+=3)); do
  data_url=${TRAIN_DATA[i]}
  data_tgz=${data_url##*/}  # training-parallel-commoncrawl.tgz
  data=${data_tgz%.*}  # training-parallel-commoncrawl
  data_lang1=${TRAIN_DATA[i+1]}
  data_lang2=${TRAIN_DATA[i+2]}
  if [ ! -e ${OUTPUT_DIR_DATA}/${data_tgz} ]; then
    echo "Download "${data_url}
    wget -O ${OUTPUT_DIR_DATA}/${data_tgz} ${data_url}
  fi

  if [ ! -d ${OUTPUT_DIR_DATA}/${data} ]; then
    echo "Extract "${data_tgz}
    mkdir -p ${OUTPUT_DIR_DATA}/${data}
    tar_type=${data_tgz:0-3}
    if [ ${tar_type} == "tar" ]; then
      tar -xvf ${OUTPUT_DIR_DATA}/${data_tgz} -C ${OUTPUT_DIR_DATA}/${data}
    else
      tar -xvzf ${OUTPUT_DIR_DATA}/${data_tgz} -C ${OUTPUT_DIR_DATA}/${data}
    fi
  fi
  # concatenate all training data
  for data_lang in $data_lang1 $data_lang2; do
    for f in `find ${OUTPUT_DIR_DATA}/${data} -regex ".*/${data_lang}"`; do
      data_dir=`dirname $f`
      data_file=`basename $f`
      f_base=${f%.*}
      f_ext=${f##*.}
      if [ $f_ext == "gz" ]; then
        gunzip $f
        l=${f_base##*.}
        f_base=${f_base%.*}
      else
        l=${f_ext}
      fi
      
      if [ $i -eq 0 ]; then
        cat ${f_base}.$l > ${OUTPUT_DIR_DATA}/train.$l
      else
        cat ${f_base}.$l >> ${OUTPUT_DIR_DATA}/train.$l
      fi
    done
  done
done

# Clone mosesdecoder
if [ ! -d ${OUTPUT_DIR}/mosesdecoder ]; then
  echo "Cloning moses for data processing"
  git clone https://github.com/moses-smt/mosesdecoder.git ${OUTPUT_DIR}/mosesdecoder
fi

# Extract develop and test data
dev_test_data=""
for ((i=0;i<${#DEV_TEST_DATA[@]};i+=3)); do
  data_url=${DEV_TEST_DATA[i]}
  data_tgz=${data_url##*/}  # training-parallel-commoncrawl.tgz
  data=${data_tgz%.*}  # training-parallel-commoncrawl
  data_lang1=${DEV_TEST_DATA[i+1]}
  data_lang2=${DEV_TEST_DATA[i+2]}
  if [ ! -e ${OUTPUT_DIR_DATA}/${data_tgz} ]; then
    echo "Download "${data_url}
    wget -O ${OUTPUT_DIR_DATA}/${data_tgz} ${data_url}
  fi

  if [ ! -d ${OUTPUT_DIR_DATA}/${data} ]; then
    echo "Extract "${data_tgz}
    mkdir -p ${OUTPUT_DIR_DATA}/${data}
    tar_type=${data_tgz:0-3}
    if [ ${tar_type} == "tar" ]; then
      tar -xvf ${OUTPUT_DIR_DATA}/${data_tgz} -C ${OUTPUT_DIR_DATA}/${data}
    else
      tar -xvzf ${OUTPUT_DIR_DATA}/${data_tgz} -C ${OUTPUT_DIR_DATA}/${data}
    fi
  fi

  for data_lang in $data_lang1 $data_lang2; do
    for f in `find ${OUTPUT_DIR_DATA}/${data} -regex ".*/${data_lang}"`; do
      data_dir=`dirname $f`
      data_file=`basename $f`
      data_out=`echo ${data_file} | cut -d '-' -f 1`  # newstest2016
      l=`echo ${data_file} | cut -d '.' -f 2`  # en
      dev_test_data="${dev_test_data}\|${data_out}"  # to make regexp
      if [ ! -e ${OUTPUT_DIR_DATA}/${data_out}.$l ]; then
        ${OUTPUT_DIR}/mosesdecoder/scripts/ems/support/input-from-sgm.perl \
          < $f > ${OUTPUT_DIR_DATA}/${data_out}.$l
      fi
    done
  done
done

# Tokenize data
for l in ${LANG1} ${LANG2}; do
  for f in `ls ${OUTPUT_DIR_DATA}/*.$l | grep "\(train${dev_test_data}\)\.$l$"`; do
    f_base=${f%.*}  # dir/train dir/newstest2016
    f_out=$f_base.tok.$l
    if [ ! -e $f_out ]; then
      echo "Tokenize "$f
      ${OUTPUT_DIR}/mosesdecoder/scripts/tokenizer/tokenizer.perl -q -l $l -threads 8 < $f > $f_out
    fi
  done
done

# Clean data
for f in ${OUTPUT_DIR_DATA}/train.${LANG1} ${OUTPUT_DIR_DATA}/train.tok.${LANG1}; do
  f_base=${f%.*}  # dir/train dir/train.tok
  f_out=${f_base}.clean
  if [ ! -e $f_out.${LANG1} ] && [ ! -e $f_out.${LANG2} ]; then
    echo "Clean "${f_base}
    ${OUTPUT_DIR}/mosesdecoder/scripts/training/clean-corpus-n.perl $f_base ${LANG1} ${LANG2} ${f_out} 1 80
  fi
done

# Clone subword-nmt and generate BPE data
if [ ! -d ${OUTPUT_DIR}/subword-nmt ]; then
  git clone https://github.com/rsennrich/subword-nmt.git ${OUTPUT_DIR}/subword-nmt
fi

# Generate BPE data and vocabulary
for num_operations in 32000; do
  if [ ! -e ${OUTPUT_DIR_BPE_DATA}/bpe.${num_operations} ]; then
    echo "Learn BPE with ${num_operations} merge operations"
    cat ${OUTPUT_DIR_DATA}/train.tok.clean.${LANG1} ${OUTPUT_DIR_DATA}/train.tok.clean.${LANG2} | \
      ${OUTPUT_DIR}/subword-nmt/learn_bpe.py -s $num_operations > ${OUTPUT_DIR_BPE_DATA}/bpe.${num_operations}
  fi

  for l in ${LANG1} ${LANG2}; do
    for f in `ls ${OUTPUT_DIR_DATA}/*.$l | grep "\(train${dev_test_data}\)\.tok\(\.clean\)\?\.$l$"`; do
      f_base=${f%.*}  # dir/train.tok dir/train.tok.clean dir/newstest2016.tok
      f_base=${f_base##*/}  # train.tok train.tok.clean newstest2016.tok
      f_out=${OUTPUT_DIR_BPE_DATA}/${f_base}.bpe.${num_operations}.$l
      if [ ! -e $f_out ]; then
        echo "Apply BPE to "$f
        ${OUTPUT_DIR}/subword-nmt/apply_bpe.py -c ${OUTPUT_DIR_BPE_DATA}/bpe.${num_operations} < $f > $f_out
      fi
    done
  done

  if [ ! -e ${OUTPUT_DIR_BPE_DATA}/vocab.bpe.${num_operations} ]; then
    echo "Create vocabulary for BPE data"
    cat ${OUTPUT_DIR_BPE_DATA}/train.tok.clean.bpe.${num_operations}.${LANG1} ${OUTPUT_DIR_BPE_DATA}/train.tok.clean.bpe.${num_operations}.${LANG2} | \
      ${OUTPUT_DIR}/subword-nmt/get_vocab.py | cut -f1 -d ' ' > ${OUTPUT_DIR_BPE_DATA}/vocab.bpe.${num_operations}
  fi
done

# Adapt to the reader
for f in ${OUTPUT_DIR_BPE_DATA}/*.bpe.${num_operations}.${LANG1}; do
  f_base=${f%.*}  # dir/train.tok.clean.bpe.32000 dir/newstest2016.tok.bpe.32000
  f_out=${f_base}.${LANG1}-${LANG2}
  if [ ! -e $f_out ]; then
    paste -d '\t' $f_base.${LANG1} $f_base.${LANG2} > $f_out
  fi
done
if [ ! -e ${OUTPUT_DIR_BPE_DATA}/vocab_all.bpe.${num_operations} ]; then
  sed '1i\<s>\n<e>\n<unk>' ${OUTPUT_DIR_BPE_DATA}/vocab.bpe.${num_operations} > ${OUTPUT_DIR_BPE_DATA}/vocab_all.bpe.${num_operations}
fi

echo "All done."