utility.py 3.3 KB
Newer Older
G
guosheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import math
16
import functools
17

G
guosheng 已提交
18 19
import paddle.fluid as fluid

L
LielinJiang 已提交
20 21
from paddle.incubate.hapi.metrics import Metric
from paddle.incubate.hapi.callbacks import ProgBarLogger
22
from paddle.incubate.hapi.text import BasicLSTMCell
G
guosheng 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60


class TrainCallback(ProgBarLogger):
    def __init__(self, ppl, log_freq, verbose=2):
        super(TrainCallback, self).__init__(log_freq, verbose)
        self.ppl = ppl

    def on_train_begin(self, logs=None):
        super(TrainCallback, self).on_train_begin(logs)
        self.train_metrics = ["ppl"]  # remove loss to not print it

    def on_epoch_begin(self, epoch=None, logs=None):
        super(TrainCallback, self).on_epoch_begin(epoch, logs)
        self.ppl.reset()

    def on_train_batch_end(self, step, logs=None):
        logs["ppl"] = self.ppl.cal_acc_ppl(logs["loss"][0], logs["batch_size"])
        if step > 0 and step % self.ppl.reset_freq == 0:
            self.ppl.reset()
        super(TrainCallback, self).on_train_batch_end(step, logs)

    def on_eval_begin(self, logs=None):
        super(TrainCallback, self).on_eval_begin(logs)
        self.eval_metrics = ["ppl"]
        self.ppl.reset()

    def on_eval_batch_end(self, step, logs=None):
        logs["ppl"] = self.ppl.cal_acc_ppl(logs["loss"][0], logs["batch_size"])
        super(TrainCallback, self).on_eval_batch_end(step, logs)


class PPL(Metric):
    def __init__(self, reset_freq=100, name=None):
        super(PPL, self).__init__()
        self._name = name or "ppl"
        self.reset_freq = reset_freq
        self.reset()

61
    def add_metric_op(self, pred, seq_length, label):
G
guosheng 已提交
62 63 64 65
        word_num = fluid.layers.reduce_sum(seq_length)
        return word_num

    def update(self, word_num):
66
        self.word_count += word_num
G
guosheng 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80
        return word_num

    def reset(self):
        self.total_loss = 0
        self.word_count = 0

    def accumulate(self):
        return self.word_count

    def name(self):
        return self._name

    def cal_acc_ppl(self, batch_loss, batch_size):
        self.total_loss += batch_loss * batch_size
81
        ppl = math.exp(self.total_loss / self.word_count)
82 83 84 85 86 87 88 89 90
        return ppl


def get_model_cls(model_cls):
    """
    Patch for BasicLSTMCell to make `_forget_bias.stop_gradient=True`
    Remove this workaround when BasicLSTMCell or recurrent_op is fixed.
    """

91
    @functools.wraps(model_cls.__init__)
92 93 94 95 96 97 98 99 100 101
    def __lstm_patch__(self, *args, **kwargs):
        self._raw_init(*args, **kwargs)
        layers = self.sublayers(include_sublayers=True)
        for layer in layers:
            if isinstance(layer, BasicLSTMCell):
                layer._forget_bias.stop_gradient = False

    model_cls._raw_init = model_cls.__init__
    model_cls.__init__ = __lstm_patch__
    return model_cls