text.py 39.8 KB
Newer Older
G
guosheng 已提交
1
import collections
G
guosheng 已提交
2
import copy
G
guosheng 已提交
3 4 5 6 7 8 9 10
import six
import sys
from functools import partial, reduce

import paddle
import paddle.fluid as fluid
import paddle.fluid.layers.utils as utils
from paddle.fluid.layers.utils import map_structure, flatten, pack_sequence_as
G
guosheng 已提交
11
from paddle.fluid.dygraph import to_variable, Embedding, Linear, LayerNorm
G
guosheng 已提交
12 13 14 15
from paddle.fluid.data_feeder import convert_dtype

from paddle.fluid import layers
from paddle.fluid.dygraph import Layer
G
guosheng 已提交
16
from paddle.fluid.layers import BeamSearchDecoder
G
guosheng 已提交
17 18 19 20 21 22 23

__all__ = [
    'RNNCell', 'BasicLSTMCell', 'BasicGRUCell', 'RNN', 'DynamicDecode',
    'BeamSearchDecoder', 'MultiHeadAttention', 'FFN',
    'TransformerEncoderLayer', 'TransformerEncoder', 'TransformerDecoderLayer',
    'TransformerDecoder', 'TransformerBeamSearchDecoder'
]
G
guosheng 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184


class RNNCell(Layer):
    def get_initial_states(self,
                           batch_ref,
                           shape=None,
                           dtype=None,
                           init_value=0,
                           batch_dim_idx=0):
        """
        Generate initialized states according to provided shape, data type and
        value.

        Parameters:
            batch_ref: A (possibly nested structure of) tensor variable[s].
                The first dimension of the tensor will be used as batch size to
                initialize states.
            shape: A (possiblely nested structure of) shape[s], where a shape is
                represented as a list/tuple of integer). -1(for batch size) will
                beautomatically inserted if shape is not started with it. If None,
                property `state_shape` will be used. The default value is None.
            dtype: A (possiblely nested structure of) data type[s]. The structure
                must be same as that of `shape`, except when all tensors' in states
                has the same data type, a single data type can be used. If None and
                property `cell.state_shape` is not available, float32 will be used
                as the data type. The default value is None.
            init_value: A float value used to initialize states.

        Returns:
            Variable: tensor variable[s] packed in the same structure provided \
                by shape, representing the initialized states.
        """
        # TODO: use inputs and batch_size
        batch_ref = flatten(batch_ref)[0]

        def _is_shape_sequence(seq):
            if sys.version_info < (3, ):
                integer_types = (
                    int,
                    long, )
            else:
                integer_types = (int, )
            """For shape, list/tuple of integer is the finest-grained objection"""
            if (isinstance(seq, list) or isinstance(seq, tuple)):
                if reduce(
                        lambda flag, x: isinstance(x, integer_types) and flag,
                        seq, True):
                    return False
            # TODO: Add check for the illegal
            if isinstance(seq, dict):
                return True
            return (isinstance(seq, collections.Sequence) and
                    not isinstance(seq, six.string_types))

        class Shape(object):
            def __init__(self, shape):
                self.shape = shape if shape[0] == -1 else ([-1] + list(shape))

        # nested structure of shapes
        states_shapes = self.state_shape if shape is None else shape
        is_sequence_ori = utils.is_sequence
        utils.is_sequence = _is_shape_sequence
        states_shapes = map_structure(lambda shape: Shape(shape),
                                      states_shapes)
        utils.is_sequence = is_sequence_ori

        # nested structure of dtypes
        try:
            states_dtypes = self.state_dtype if dtype is None else dtype
        except NotImplementedError:  # use fp32 as default
            states_dtypes = "float32"
        if len(flatten(states_dtypes)) == 1:
            dtype = flatten(states_dtypes)[0]
            states_dtypes = map_structure(lambda shape: dtype, states_shapes)

        init_states = map_structure(
            lambda shape, dtype: fluid.layers.fill_constant_batch_size_like(
                input=batch_ref,
                shape=shape.shape,
                dtype=dtype,
                value=init_value,
                input_dim_idx=batch_dim_idx), states_shapes, states_dtypes)
        return init_states

    @property
    def state_shape(self):
        """
        Abstract method (property).
        Used to initialize states.
        A (possiblely nested structure of) shape[s], where a shape is represented
        as a list/tuple of integers (-1 for batch size would be automatically
        inserted into a shape if shape is not started with it).
        Not necessary to be implemented if states are not initialized by
        `get_initial_states` or the `shape` argument is provided when using
        `get_initial_states`.
        """
        raise NotImplementedError(
            "Please add implementaion for `state_shape` in the used cell.")

    @property
    def state_dtype(self):
        """
        Abstract method (property).
        Used to initialize states.
        A (possiblely nested structure of) data types[s]. The structure must be
        same as that of `shape`, except when all tensors' in states has the same
        data type, a signle data type can be used.
        Not necessary to be implemented if states are not initialized
        by `get_initial_states` or the `dtype` argument is provided when using
        `get_initial_states`.
        """
        raise NotImplementedError(
            "Please add implementaion for `state_dtype` in the used cell.")


class BasicLSTMCell(RNNCell):
    """
    ****
    BasicLSTMUnit class, Using basic operator to build LSTM
    The algorithm can be described as the code below.
        .. math::
           i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + b_i)
           f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + b_f + forget_bias )
           o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + b_o)
           \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + b_c)
           c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
           h_t &= o_t \odot tanh(c_t)
        - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
          of weights from the input gate to the input)
        - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
        - sigmoid is the logistic sigmoid function.
        - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
          and cell activation vectors, respectively, all of which have the same size as
          the cell output activation vector $h$.
        - The :math:`\odot` is the element-wise product of the vectors.
        - :math:`tanh` is the activation functions.
        - :math:`\\tilde{c_t}` is also called candidate hidden state,
          which is computed based on the current input and the previous hidden state.
    Args:
        name_scope(string) : The name scope used to identify parameter and bias name
        hidden_size (integer): The hidden size used in the Unit.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            weight matrix. Note:
            If it is set to None or one attribute of ParamAttr, lstm_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The parameter attribute for the bias
            of LSTM unit.
            If it is set to None or one attribute of ParamAttr, lstm_unit will
            create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized as zero. Default: None.
        gate_activation (function|None): The activation function for gates (actGate).
                                  Default: 'fluid.layers.sigmoid'
        activation (function|None): The activation function for cells (actNode).
                             Default: 'fluid.layers.tanh'
        forget_bias(float|1.0): forget bias used when computing forget gate
        dtype(string): data type used in this unit
    """

    def __init__(self,
                 input_size,
G
guosheng 已提交
185
                 hidden_size,
G
guosheng 已提交
186 187 188 189 190 191
                 param_attr=None,
                 bias_attr=None,
                 gate_activation=None,
                 activation=None,
                 forget_bias=1.0,
                 dtype='float32'):
G
guosheng 已提交
192
        super(BasicLSTMCell, self).__init__()
G
guosheng 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238

        self._hidden_size = hidden_size
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._gate_activation = gate_activation or layers.sigmoid
        self._activation = activation or layers.tanh
        self._forget_bias = layers.fill_constant(
            [1], dtype=dtype, value=forget_bias)
        self._forget_bias.stop_gradient = False
        self._dtype = dtype
        self._input_size = input_size

        self._weight = self.create_parameter(
            attr=self._param_attr,
            shape=[
                self._input_size + self._hidden_size, 4 * self._hidden_size
            ],
            dtype=self._dtype)

        self._bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[4 * self._hidden_size],
            dtype=self._dtype,
            is_bias=True)

    def forward(self, input, state):
        pre_hidden, pre_cell = state
        concat_input_hidden = layers.concat([input, pre_hidden], 1)
        gate_input = layers.matmul(x=concat_input_hidden, y=self._weight)

        gate_input = layers.elementwise_add(gate_input, self._bias)
        i, j, f, o = layers.split(gate_input, num_or_sections=4, dim=-1)
        new_cell = layers.elementwise_add(
            layers.elementwise_mul(
                pre_cell,
                layers.sigmoid(layers.elementwise_add(f, self._forget_bias))),
            layers.elementwise_mul(layers.sigmoid(i), layers.tanh(j)))
        new_hidden = layers.tanh(new_cell) * layers.sigmoid(o)

        return new_hidden, [new_hidden, new_cell]

    @property
    def state_shape(self):
        return [[self._hidden_size], [self._hidden_size]]


G
guosheng 已提交
239
class BasicGRUCell(RNNCell):
G
guosheng 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
    """
    ****
    BasicGRUUnit class, using basic operators to build GRU
    The algorithm can be described as the equations below.

        .. math::
            u_t & = actGate(W_ux xu_{t} + W_uh h_{t-1} + b_u)

            r_t & = actGate(W_rx xr_{t} + W_rh h_{t-1} + b_r)

            m_t & = actNode(W_cx xm_t + W_ch dot(r_t, h_{t-1}) + b_m)

            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    Args:
        hidden_size (integer): The hidden size used in the Unit.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            weight matrix. Note:
            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The parameter attribute for the bias
            of GRU unit.
            If it is set to None or one attribute of ParamAttr, gru_unit will 
            create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        gate_activation (function|None): The activation function for gates (actGate).
                                  Default: 'fluid.layers.sigmoid'
        activation (function|None): The activation function for cell (actNode).
                             Default: 'fluid.layers.tanh'
        dtype(string): data type used in this unit
    """

    def __init__(self,
G
guosheng 已提交
274
                 input_size,
G
guosheng 已提交
275 276 277 278 279 280
                 hidden_size,
                 param_attr=None,
                 bias_attr=None,
                 gate_activation=None,
                 activation=None,
                 dtype='float32'):
G
guosheng 已提交
281 282 283
        super(BasicGRUCell, self).__init__()
        self._input_size = input_size
        self._hiden_size = hidden_size
G
guosheng 已提交
284 285 286 287 288 289
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._gate_activation = gate_activation or layers.sigmoid
        self._activation = activation or layers.tanh
        self._dtype = dtype

G
guosheng 已提交
290 291 292 293 294 295 296 297 298 299 300 301
        if self._param_attr is not None and self._param_attr.name is not None:
            gate_param_attr = copy.deepcopy(self._param_attr)
            candidate_param_attr = copy.deepcopy(self._param_attr)
            gate_param_attr.name += "_gate"
            candidate_param_attr.name += "_candidate"
        else:
            gate_param_attr = self._param_attr
            candidate_param_attr = self._param_attr

        self._gate_weight = self.create_parameter(
            attr=gate_param_attr,
            shape=[self._input_size + self._hiden_size, 2 * self._hiden_size],
G
guosheng 已提交
302 303
            dtype=self._dtype)

G
guosheng 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317
        self._candidate_weight = self.create_parameter(
            attr=candidate_param_attr,
            shape=[self._input_size + self._hiden_size, self._hiden_size],
            dtype=self._dtype)

        if self._bias_attr is not None and self._bias_attr.name is not None:
            gate_bias_attr = copy.deepcopy(self._bias_attr)
            candidate_bias_attr = copy.deepcopy(self._bias_attr)
            gate_bias_attr.name += "_gate"
            candidate_bias_attr.name += "_candidate"
        else:
            gate_bias_attr = self._bias_attr
            candidate_bias_attr = self._bias_attr

G
guosheng 已提交
318 319 320 321 322 323 324 325 326 327
        self._gate_bias = self.create_parameter(
            attr=gate_bias_attr,
            shape=[2 * self._hiden_size],
            dtype=self._dtype,
            is_bias=True)
        self._candidate_bias = self.create_parameter(
            attr=candidate_bias_attr,
            shape=[self._hiden_size],
            dtype=self._dtype,
            is_bias=True)
G
guosheng 已提交
328 329

    def forward(self, input, state):
G
guosheng 已提交
330 331
        pre_hidden = state
        concat_input_hidden = layers.concat([input, pre_hidden], axis=1)
G
guosheng 已提交
332

G
guosheng 已提交
333
        gate_input = layers.matmul(x=concat_input_hidden, y=self._gate_weight)
G
guosheng 已提交
334

G
guosheng 已提交
335 336 337 338 339 340 341
        gate_input = layers.elementwise_add(gate_input, self._gate_bias)

        gate_input = self._gate_activation(gate_input)
        r, u = layers.split(gate_input, num_or_sections=2, dim=1)

        r_hidden = r * pre_hidden

G
guosheng 已提交
342 343
        candidate = layers.matmul(
            layers.concat([input, r_hidden], 1), self._candidate_weight)
G
guosheng 已提交
344 345 346 347 348 349
        candidate = layers.elementwise_add(candidate, self._candidate_bias)

        c = self._activation(candidate)
        new_hidden = u * pre_hidden + (1 - u) * c

        return new_hidden
G
guosheng 已提交
350 351 352

    @property
    def state_shape(self):
G
guosheng 已提交
353
        return [self._hidden_size]
G
guosheng 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523


class RNN(fluid.dygraph.Layer):
    def __init__(self, cell, is_reverse=False, time_major=False):
        super(RNN, self).__init__()
        self.cell = cell
        if not hasattr(self.cell, "call"):
            self.cell.call = self.cell.forward
        self.is_reverse = is_reverse
        self.time_major = time_major
        self.batch_index, self.time_step_index = (1, 0) if time_major else (0,
                                                                            1)

    def forward(self,
                inputs,
                initial_states=None,
                sequence_length=None,
                **kwargs):
        if fluid.in_dygraph_mode():

            class ArrayWrapper(object):
                def __init__(self, x):
                    self.array = [x]

                def append(self, x):
                    self.array.append(x)
                    return self

            def _maybe_copy(state, new_state, step_mask):
                # TODO: use where_op
                new_state = fluid.layers.elementwise_mul(
                    new_state, step_mask,
                    axis=0) - fluid.layers.elementwise_mul(
                        state, (step_mask - 1), axis=0)
                return new_state

            flat_inputs = flatten(inputs)
            batch_size, time_steps = (
                flat_inputs[0].shape[self.batch_index],
                flat_inputs[0].shape[self.time_step_index])

            if initial_states is None:
                initial_states = self.cell.get_initial_states(
                    batch_ref=inputs, batch_dim_idx=self.batch_index)

            if not self.time_major:
                inputs = map_structure(
                    lambda x: fluid.layers.transpose(x, [1, 0] + list(
                        range(2, len(x.shape)))), inputs)

            if sequence_length:
                mask = fluid.layers.sequence_mask(
                    sequence_length,
                    maxlen=time_steps,
                    dtype=flatten(initial_states)[0].dtype)
                mask = fluid.layers.transpose(mask, [1, 0])

            if self.is_reverse:
                inputs = map_structure(
                    lambda x: fluid.layers.reverse(x, axis=[0]), inputs)
                mask = fluid.layers.reverse(
                    mask, axis=[0]) if sequence_length else None

            states = initial_states
            outputs = []
            for i in range(time_steps):
                step_inputs = map_structure(lambda x: x[i], inputs)
                step_outputs, new_states = self.cell(step_inputs, states,
                                                     **kwargs)
                if sequence_length:
                    new_states = map_structure(
                        partial(
                            _maybe_copy, step_mask=mask[i]),
                        states,
                        new_states)
                states = new_states
                outputs = map_structure(
                    lambda x: ArrayWrapper(x),
                    step_outputs) if i == 0 else map_structure(
                        lambda x, x_array: x_array.append(x), step_outputs,
                        outputs)

            final_outputs = map_structure(
                lambda x: fluid.layers.stack(x.array,
                                             axis=self.time_step_index),
                outputs)

            if self.is_reverse:
                final_outputs = map_structure(
                    lambda x: fluid.layers.reverse(x,
                                                   axis=self.time_step_index),
                    final_outputs)

            final_states = new_states
        else:
            final_outputs, final_states = fluid.layers.rnn(
                self.cell,
                inputs,
                initial_states=initial_states,
                sequence_length=sequence_length,
                time_major=self.time_major,
                is_reverse=self.is_reverse,
                **kwargs)
        return final_outputs, final_states


class DynamicDecode(Layer):
    def __init__(self,
                 decoder,
                 max_step_num=None,
                 output_time_major=False,
                 impute_finished=False,
                 is_test=False,
                 return_length=False):
        super(DynamicDecode, self).__init__()
        self.decoder = decoder
        self.max_step_num = max_step_num
        self.output_time_major = output_time_major
        self.impute_finished = impute_finished
        self.is_test = is_test
        self.return_length = return_length

    def forward(self, inits=None, **kwargs):
        if fluid.in_dygraph_mode():

            class ArrayWrapper(object):
                def __init__(self, x):
                    self.array = [x]

                def append(self, x):
                    self.array.append(x)
                    return self

                def __getitem__(self, item):
                    return self.array.__getitem__(item)

            def _maybe_copy(state, new_state, step_mask):
                # TODO: use where_op
                state_dtype = state.dtype
                if convert_dtype(state_dtype) in ["bool"]:
                    state = layers.cast(state, dtype="float32")
                    new_state = layers.cast(new_state, dtype="float32")
                if step_mask.dtype != state.dtype:
                    step_mask = layers.cast(step_mask, dtype=state.dtype)
                    # otherwise, renamed bool gradients of would be summed up leading
                    # to sum(bool) error.
                    step_mask.stop_gradient = True
                new_state = layers.elementwise_mul(
                    state, step_mask, axis=0) - layers.elementwise_mul(
                        new_state, (step_mask - 1), axis=0)
                if convert_dtype(state_dtype) in ["bool"]:
                    new_state = layers.cast(new_state, dtype=state_dtype)
                return new_state

            initial_inputs, initial_states, initial_finished = self.decoder.initialize(
                inits)
            inputs, states, finished = (initial_inputs, initial_states,
                                        initial_finished)
            cond = layers.logical_not((layers.reduce_all(initial_finished)))
            sequence_lengths = layers.cast(
                layers.zeros_like(initial_finished), "int64")
            outputs = None

            step_idx = 0
            step_idx_tensor = layers.fill_constant(
                shape=[1], dtype="int64", value=step_idx)
            while cond.numpy():
                (step_outputs, next_states, next_inputs,
                 next_finished) = self.decoder.step(step_idx_tensor, inputs,
                                                    states, **kwargs)
524 525 526 527 528 529 530 531 532
                if not self.decoder.tracks_own_finished:
                    # BeamSearchDecoder would track it own finished, since
                    # beams would be reordered and the finished status of each
                    # entry might change. Otherwise, perform logical OR which
                    # would not change the already finished.
                    next_finished = layers.logical_or(next_finished, finished)
                    # To confirm states.finished/finished be consistent with
                    # next_finished.
                    layers.assign(next_finished, finished)
G
guosheng 已提交
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
                next_sequence_lengths = layers.elementwise_add(
                    sequence_lengths,
                    layers.cast(
                        layers.logical_not(finished), sequence_lengths.dtype))

                if self.impute_finished:  # rectify the states for the finished.
                    next_states = map_structure(
                        lambda x, y: _maybe_copy(x, y, finished), states,
                        next_states)
                outputs = map_structure(
                    lambda x: ArrayWrapper(x),
                    step_outputs) if step_idx == 0 else map_structure(
                        lambda x, x_array: x_array.append(x), step_outputs,
                        outputs)
                inputs, states, finished, sequence_lengths = (
                    next_inputs, next_states, next_finished,
                    next_sequence_lengths)

                layers.increment(x=step_idx_tensor, value=1.0, in_place=True)
                step_idx += 1

                layers.logical_not(layers.reduce_all(finished), cond)
                if self.max_step_num is not None and step_idx > self.max_step_num:
                    break

            final_outputs = map_structure(
                lambda x: fluid.layers.stack(x.array, axis=0), outputs)
            final_states = states

            try:
                final_outputs, final_states = self.decoder.finalize(
                    final_outputs, final_states, sequence_lengths)
            except NotImplementedError:
                pass

            if not self.output_time_major:
                final_outputs = map_structure(
                    lambda x: layers.transpose(x, [1, 0] + list(
                        range(2, len(x.shape)))), final_outputs)

            return (final_outputs, final_states,
                    sequence_lengths) if self.return_length else (
                        final_outputs, final_states)
        else:
            return fluid.layers.dynamic_decode(
                self.decoder,
                inits,
                max_step_num=self.max_step_num,
                output_time_major=self.output_time_major,
                impute_finished=self.impute_finished,
                is_test=self.is_test,
                return_length=self.return_length,
                **kwargs)


class TransfomerCell(object):
    """
    Let inputs=(trg_word, trg_pos), states=cache to make Transformer can be
    used as RNNCell
    """

    def __init__(self, decoder):
        self.decoder = decoder

    def __call__(self, inputs, states, trg_src_attn_bias, enc_output,
                 static_caches):
        trg_word, trg_pos = inputs
        for cache, static_cache in zip(states, static_caches):
            cache.update(static_cache)
        logits = self.decoder(trg_word, trg_pos, None, trg_src_attn_bias,
                              enc_output, states)
        new_states = [{"k": cache["k"], "v": cache["v"]} for cache in states]
        return logits, new_states


class TransformerBeamSearchDecoder(layers.BeamSearchDecoder):
    def __init__(self, cell, start_token, end_token, beam_size,
                 var_dim_in_state):
        super(TransformerBeamSearchDecoder,
              self).__init__(cell, start_token, end_token, beam_size)
        self.cell = cell
        self.var_dim_in_state = var_dim_in_state

    def _merge_batch_beams_with_var_dim(self, x):
        # init length of cache is 0, and it increases with decoding carrying on,
        # thus need to reshape elaborately
        var_dim_in_state = self.var_dim_in_state + 1  # count in beam dim
        x = layers.transpose(x,
                             list(range(var_dim_in_state, len(x.shape))) +
                             list(range(0, var_dim_in_state)))
        x = layers.reshape(
            x, [0] * (len(x.shape) - var_dim_in_state
                      ) + [self.batch_size * self.beam_size] +
            [int(size) for size in x.shape[-var_dim_in_state + 2:]])
        x = layers.transpose(
            x,
            list(range((len(x.shape) + 1 - var_dim_in_state), len(x.shape))) +
            list(range(0, (len(x.shape) + 1 - var_dim_in_state))))
        return x

    def _split_batch_beams_with_var_dim(self, x):
        var_dim_size = layers.shape(x)[self.var_dim_in_state]
        x = layers.reshape(
            x, [-1, self.beam_size] +
            [int(size)
             for size in x.shape[1:self.var_dim_in_state]] + [var_dim_size] +
            [int(size) for size in x.shape[self.var_dim_in_state + 1:]])
        return x

    def step(self, time, inputs, states, **kwargs):
        # compared to RNN, Transformer has 3D data at every decoding step
        inputs = layers.reshape(inputs, [-1, 1])  # token
        pos = layers.ones_like(inputs) * time  # pos
        cell_states = map_structure(self._merge_batch_beams_with_var_dim,
                                    states.cell_states)

        cell_outputs, next_cell_states = self.cell((inputs, pos), cell_states,
                                                   **kwargs)
        cell_outputs = map_structure(self._split_batch_beams, cell_outputs)
        next_cell_states = map_structure(self._split_batch_beams_with_var_dim,
                                         next_cell_states)

        beam_search_output, beam_search_state = self._beam_search_step(
            time=time,
            logits=cell_outputs,
            next_cell_states=next_cell_states,
            beam_state=states)
        next_inputs, finished = (beam_search_output.predicted_ids,
                                 beam_search_state.finished)

        return (beam_search_output, beam_search_state, next_inputs, finished)
G
guosheng 已提交
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000


### Transformer Modules ###
class PrePostProcessLayer(Layer):
    """
    PrePostProcessLayer
    """

    def __init__(self, process_cmd, d_model, dropout_rate):
        super(PrePostProcessLayer, self).__init__()
        self.process_cmd = process_cmd
        self.functors = []
        for cmd in self.process_cmd:
            if cmd == "a":  # add residual connection
                self.functors.append(lambda x, y: x + y if y else x)
            elif cmd == "n":  # add layer normalization
                self.functors.append(
                    self.add_sublayer(
                        "layer_norm_%d" % len(
                            self.sublayers(include_sublayers=False)),
                        LayerNorm(
                            normalized_shape=d_model,
                            param_attr=fluid.ParamAttr(
                                initializer=fluid.initializer.Constant(1.)),
                            bias_attr=fluid.ParamAttr(
                                initializer=fluid.initializer.Constant(0.)))))
            elif cmd == "d":  # add dropout
                self.functors.append(lambda x: layers.dropout(
                    x, dropout_prob=dropout_rate, is_test=False)
                                     if dropout_rate else x)

    def forward(self, x, residual=None):
        for i, cmd in enumerate(self.process_cmd):
            if cmd == "a":
                x = self.functors[i](x, residual)
            else:
                x = self.functors[i](x)
        return x


class MultiHeadAttention(Layer):
    """
    Multi-Head Attention
    """

    def __init__(self, d_key, d_value, d_model, n_head=1, dropout_rate=0.):
        super(MultiHeadAttention, self).__init__()
        self.n_head = n_head
        self.d_key = d_key
        self.d_value = d_value
        self.d_model = d_model
        self.dropout_rate = dropout_rate
        self.q_fc = Linear(
            input_dim=d_model, output_dim=d_key * n_head, bias_attr=False)
        self.k_fc = Linear(
            input_dim=d_model, output_dim=d_key * n_head, bias_attr=False)
        self.v_fc = Linear(
            input_dim=d_model, output_dim=d_value * n_head, bias_attr=False)
        self.proj_fc = Linear(
            input_dim=d_value * n_head, output_dim=d_model, bias_attr=False)

    def _prepare_qkv(self, queries, keys, values, cache=None):
        if keys is None:  # self-attention
            keys, values = queries, queries
            static_kv = False
        else:  # cross-attention
            static_kv = True

        q = self.q_fc(queries)
        q = layers.reshape(x=q, shape=[0, 0, self.n_head, self.d_key])
        q = layers.transpose(x=q, perm=[0, 2, 1, 3])

        if cache is not None and static_kv and "static_k" in cache:
            # for encoder-decoder attention in inference and has cached
            k = cache["static_k"]
            v = cache["static_v"]
        else:
            k = self.k_fc(keys)
            v = self.v_fc(values)
            k = layers.reshape(x=k, shape=[0, 0, self.n_head, self.d_key])
            k = layers.transpose(x=k, perm=[0, 2, 1, 3])
            v = layers.reshape(x=v, shape=[0, 0, self.n_head, self.d_value])
            v = layers.transpose(x=v, perm=[0, 2, 1, 3])

        if cache is not None:
            if static_kv and not "static_k" in cache:
                # for encoder-decoder attention in inference and has not cached
                cache["static_k"], cache["static_v"] = k, v
            elif not static_kv:
                # for decoder self-attention in inference
                cache_k, cache_v = cache["k"], cache["v"]
                k = layers.concat([cache_k, k], axis=2)
                v = layers.concat([cache_v, v], axis=2)
                cache["k"], cache["v"] = k, v

        return q, k, v

    def forward(self, queries, keys, values, attn_bias, cache=None):
        # compute q ,k ,v
        q, k, v = self._prepare_qkv(queries, keys, values, cache)

        # scale dot product attention
        product = layers.matmul(
            x=q, y=k, transpose_y=True, alpha=self.d_model**-0.5)
        if attn_bias:
            product += attn_bias
        weights = layers.softmax(product)
        if self.dropout_rate:
            weights = layers.dropout(
                weights, dropout_prob=self.dropout_rate, is_test=False)

        out = layers.matmul(weights, v)

        # combine heads
        out = layers.transpose(out, perm=[0, 2, 1, 3])
        out = layers.reshape(x=out, shape=[0, 0, out.shape[2] * out.shape[3]])

        # project to output
        out = self.proj_fc(out)
        return out

    def cal_kv(self, keys, values):
        k = self.k_fc(keys)
        v = self.v_fc(values)
        k = layers.reshape(x=k, shape=[0, 0, self.n_head, self.d_key])
        k = layers.transpose(x=k, perm=[0, 2, 1, 3])
        v = layers.reshape(x=v, shape=[0, 0, self.n_head, self.d_value])
        v = layers.transpose(x=v, perm=[0, 2, 1, 3])
        return k, v


class FFN(Layer):
    """
    Feed-Forward Network
    """

    def __init__(self, d_inner_hid, d_model, dropout_rate):
        super(FFN, self).__init__()
        self.dropout_rate = dropout_rate
        self.fc1 = Linear(
            input_dim=d_model, output_dim=d_inner_hid, act="relu")
        self.fc2 = Linear(input_dim=d_inner_hid, output_dim=d_model)

    def forward(self, x):
        hidden = self.fc1(x)
        if self.dropout_rate:
            hidden = layers.dropout(
                hidden, dropout_prob=self.dropout_rate, is_test=False)
        out = self.fc2(hidden)
        return out


class TransformerEncoderLayer(Layer):
    """
    EncoderLayer
    """

    def __init__(self,
                 n_head,
                 d_key,
                 d_value,
                 d_model,
                 d_inner_hid,
                 prepostprocess_dropout,
                 attention_dropout,
                 relu_dropout,
                 preprocess_cmd="n",
                 postprocess_cmd="da"):

        super(TransformerEncoderLayer, self).__init__()

        self.preprocesser1 = PrePostProcessLayer(preprocess_cmd, d_model,
                                                 prepostprocess_dropout)
        self.self_attn = MultiHeadAttention(d_key, d_value, d_model, n_head,
                                            attention_dropout)
        self.postprocesser1 = PrePostProcessLayer(postprocess_cmd, d_model,
                                                  prepostprocess_dropout)

        self.preprocesser2 = PrePostProcessLayer(preprocess_cmd, d_model,
                                                 prepostprocess_dropout)
        self.ffn = FFN(d_inner_hid, d_model, relu_dropout)
        self.postprocesser2 = PrePostProcessLayer(postprocess_cmd, d_model,
                                                  prepostprocess_dropout)

    def forward(self, enc_input, attn_bias):
        attn_output = self.self_attn(
            self.preprocesser1(enc_input), None, None, attn_bias)
        attn_output = self.postprocesser1(attn_output, enc_input)

        ffn_output = self.ffn(self.preprocesser2(attn_output))
        ffn_output = self.postprocesser2(ffn_output, attn_output)
        return ffn_output


class TransformerEncoder(Layer):
    """
    encoder
    """

    def __init__(self,
                 n_layer,
                 n_head,
                 d_key,
                 d_value,
                 d_model,
                 d_inner_hid,
                 prepostprocess_dropout,
                 attention_dropout,
                 relu_dropout,
                 preprocess_cmd="n",
                 postprocess_cmd="da"):

        super(TransformerEncoder, self).__init__()

        self.encoder_layers = list()
        for i in range(n_layer):
            self.encoder_layers.append(
                self.add_sublayer(
                    "layer_%d" % i,
                    TransformerEncoderLayer(
                        n_head, d_key, d_value, d_model, d_inner_hid,
                        prepostprocess_dropout, attention_dropout,
                        relu_dropout, preprocess_cmd, postprocess_cmd)))
        self.processer = PrePostProcessLayer(preprocess_cmd, d_model,
                                             prepostprocess_dropout)

    def forward(self, enc_input, attn_bias):
        for encoder_layer in self.encoder_layers:
            enc_output = encoder_layer(enc_input, attn_bias)
            enc_input = enc_output

        return self.processer(enc_output)


class TransformerDecoderLayer(Layer):
    """
    decoder
    """

    def __init__(self,
                 n_head,
                 d_key,
                 d_value,
                 d_model,
                 d_inner_hid,
                 prepostprocess_dropout,
                 attention_dropout,
                 relu_dropout,
                 preprocess_cmd="n",
                 postprocess_cmd="da"):
        super(TransformerDecoderLayer, self).__init__()

        self.preprocesser1 = PrePostProcessLayer(preprocess_cmd, d_model,
                                                 prepostprocess_dropout)
        self.self_attn = MultiHeadAttention(d_key, d_value, d_model, n_head,
                                            attention_dropout)
        self.postprocesser1 = PrePostProcessLayer(postprocess_cmd, d_model,
                                                  prepostprocess_dropout)

        self.preprocesser2 = PrePostProcessLayer(preprocess_cmd, d_model,
                                                 prepostprocess_dropout)
        self.cross_attn = MultiHeadAttention(d_key, d_value, d_model, n_head,
                                             attention_dropout)
        self.postprocesser2 = PrePostProcessLayer(postprocess_cmd, d_model,
                                                  prepostprocess_dropout)

        self.preprocesser3 = PrePostProcessLayer(preprocess_cmd, d_model,
                                                 prepostprocess_dropout)
        self.ffn = FFN(d_inner_hid, d_model, relu_dropout)
        self.postprocesser3 = PrePostProcessLayer(postprocess_cmd, d_model,
                                                  prepostprocess_dropout)

    def forward(self,
                dec_input,
                enc_output,
                self_attn_bias,
                cross_attn_bias,
                cache=None):
        self_attn_output = self.self_attn(
            self.preprocesser1(dec_input), None, None, self_attn_bias, cache)
        self_attn_output = self.postprocesser1(self_attn_output, dec_input)

        cross_attn_output = self.cross_attn(
            self.preprocesser2(self_attn_output), enc_output, enc_output,
            cross_attn_bias, cache)
        cross_attn_output = self.postprocesser2(cross_attn_output,
                                                self_attn_output)

        ffn_output = self.ffn(self.preprocesser3(cross_attn_output))
        ffn_output = self.postprocesser3(ffn_output, cross_attn_output)

        return ffn_output


class TransformerDecoder(Layer):
    """
    decoder
    """

    def __init__(self, n_layer, n_head, d_key, d_value, d_model, d_inner_hid,
                 prepostprocess_dropout, attention_dropout, relu_dropout,
                 preprocess_cmd, postprocess_cmd):
        super(TransformerDecoder, self).__init__()

        self.decoder_layers = list()
        for i in range(n_layer):
            self.decoder_layers.append(
                self.add_sublayer(
                    "layer_%d" % i,
                    TransformerDecoderLayer(
                        n_head, d_key, d_value, d_model, d_inner_hid,
                        prepostprocess_dropout, attention_dropout,
                        relu_dropout, preprocess_cmd, postprocess_cmd)))
        self.processer = PrePostProcessLayer(preprocess_cmd, d_model,
                                             prepostprocess_dropout)

    def forward(self,
                dec_input,
                enc_output,
                self_attn_bias,
                cross_attn_bias,
                caches=None):
        for i, decoder_layer in enumerate(self.decoder_layers):
            dec_output = decoder_layer(dec_input, enc_output, self_attn_bias,
                                       cross_attn_bias, None
                                       if caches is None else caches[i])
            dec_input = dec_output

        return self.processer(dec_output)

    def prepare_static_cache(self, enc_output):
        return [
            dict(
                zip(("static_k", "static_v"),
                    decoder_layer.cross_attn.cal_kv(enc_output, enc_output)))
            for decoder_layer in self.decoder_layers
        ]