models.py 5.8 KB
Newer Older
W
wangxiao1021 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.fluid as fluid
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear, Embedding
from paddle.fluid.dygraph.base import to_variable
import numpy as np
from hapi.model import Model
from hapi.text.text import GRUEncoderLayer as BiGRUEncoder
from hapi.text.text import BOWEncoder, CNNEncoder, GRUEncoder


class CNN(Model):
    def __init__(self,  dict_dim, batch_size, seq_len):
        super(CNN, self).__init__()
        self.dict_dim = dict_dim
        self.emb_dim = 128
        self.hid_dim = 128
        self.fc_hid_dim = 96
        self.class_dim = 2
        self.channels = 1
        self.win_size = [3, self.hid_dim]
        self.batch_size = batch_size
        self.seq_len = seq_len
        self._encoder = CNNEncoder(
            dict_size=self.dict_dim + 1,
            emb_dim=self.emb_dim,
            seq_len=self.seq_len,
            filter_size= self.win_size,
            num_filters= self.hid_dim,
            hidden_dim= self.hid_dim,
            padding_idx=None,
            act='tanh')
        self._fc1 = Linear(input_dim = self.hid_dim*self.seq_len, output_dim=self.fc_hid_dim, act="softmax")
        self._fc_prediction = Linear(input_dim = self.fc_hid_dim,
                                 output_dim = self.class_dim,
                                 act="softmax")

    def forward(self, inputs):
        conv_3 = self._encoder(inputs)
        fc_1 = self._fc1(conv_3)
        prediction = self._fc_prediction(fc_1)
        return prediction


class BOW(Model):
    def __init__(self, dict_dim, batch_size, seq_len):
        super(BOW, self).__init__()
        self.dict_dim = dict_dim
        self.emb_dim = 128
        self.hid_dim = 128
        self.fc_hid_dim = 96
        self.class_dim = 2
        self.batch_size = batch_size
        self.seq_len = seq_len
        self._encoder = BOWEncoder(
            dict_size=self.dict_dim + 1,
            emb_dim=self.emb_dim,
            padding_idx=None,
            bow_dim=self.hid_dim,
            seq_len=self.seq_len)
        self._fc1 = Linear(input_dim = self.hid_dim, output_dim=self.hid_dim, act="tanh")
        self._fc2 = Linear(input_dim = self.hid_dim, output_dim=self.fc_hid_dim, act="tanh")
        self._fc_prediction = Linear(input_dim = self.fc_hid_dim,
                                 output_dim = self.class_dim,
                                 act="softmax")

    def forward(self, inputs):
        bow_1 = self._encoder(inputs)
        bow_1 = fluid.layers.tanh(bow_1)
        fc_1 = self._fc1(bow_1)
        fc_2 = self._fc2(fc_1)
        prediction = self._fc_prediction(fc_2)
        return prediction


class GRU(Model):
    def __init__(self, dict_dim, batch_size, seq_len):
        super(GRU, self).__init__()
        self.dict_dim = dict_dim
        self.emb_dim = 128
        self.hid_dim = 128
        self.fc_hid_dim = 96
        self.class_dim = 2
        self.batch_size = batch_size
        self.seq_len = seq_len
        self._fc1 = Linear(input_dim=self.hid_dim, output_dim=self.fc_hid_dim, act="tanh")
        self._fc_prediction = Linear(input_dim=self.fc_hid_dim,
                                 output_dim=self.class_dim,
                                 act="softmax")
        self._encoder = GRUEncoder(
            dict_size=self.dict_dim + 1,
            emb_dim=self.emb_dim,
            gru_dim=self.hid_dim,
            hidden_dim=self.hid_dim,
            padding_idx=None,
            seq_len=self.seq_len)

    def forward(self, inputs):
        emb = self._encoder(inputs)
        fc_1 = self._fc1(emb)
        prediction = self._fc_prediction(fc_1)
        return prediction

        
class BiGRU(Model):
    def __init__(self, dict_dim, batch_size, seq_len):
        super(BiGRU, self).__init__()
        self.dict_dim = dict_dim
        self.emb_dim = 128
        self.hid_dim = 128
        self.fc_hid_dim = 96
        self.class_dim = 2
        self.batch_size = batch_size
        self.seq_len = seq_len
        self.embedding = Embedding(
            size=[self.dict_dim + 1, self.emb_dim],
            dtype='float32',
            param_attr=fluid.ParamAttr(learning_rate=30),
            is_sparse=False)
        h_0 = np.zeros((self.batch_size, self.hid_dim), dtype="float32")
        h_0 = to_variable(h_0)
        self._fc1 = Linear(input_dim = self.hid_dim, output_dim=self.hid_dim*3)
        self._fc2 = Linear(input_dim = self.hid_dim*2, output_dim=self.fc_hid_dim, act="tanh")
        self._fc_prediction = Linear(input_dim=self.fc_hid_dim,
                                 output_dim=self.class_dim,
                                 act="softmax")
        self._encoder = BiGRUEncoder(
            grnn_hidden_dim=self.hid_dim,
            input_dim=self.hid_dim * 3,
            h_0=h_0,
            init_bound=0.1,
            is_bidirection=True)

    def forward(self, inputs):
        emb = self.embedding(inputs)
        emb = fluid.layers.reshape(emb, shape=[self.batch_size, -1, self.hid_dim])
        fc_1 = self._fc1(emb)
        encoded_vector = self._encoder(fc_1)
        encoded_vector = fluid.layers.tanh(encoded_vector)
        encoded_vector = fluid.layers.reduce_max(encoded_vector, dim=1)
        fc_2 = self._fc2(encoded_vector)
        prediction = self._fc_prediction(fc_2)
        return prediction