eval.py 3.8 KB
Newer Older
H
huangjun12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#  Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import argparse
import os
import sys
import logging
import paddle.fluid as fluid

21
from hapi.model import set_device, Input
D
dengkaipeng 已提交
22
from hapi.vision.models import bmn, BmnLoss
H
huangjun12 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
from bmn_metric import BmnMetric
from reader import BmnDataset
from config_utils import *

DATATYPE = 'float32'

logging.root.handlers = []
FORMAT = '[%(levelname)s: %(filename)s: %(lineno)4d]: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT, stream=sys.stdout)
logger = logging.getLogger(__name__)


def parse_args():
    parser = argparse.ArgumentParser("BMN test for performance evaluation.")
    parser.add_argument(
        "-d",
        "--dynamic",
        default=True,
        action='store_true',
        help="enable dygraph mode, only support dynamic mode at present time")
    parser.add_argument(
        '--config_file',
        type=str,
        default='bmn.yaml',
        help='path to config file of model')
    parser.add_argument(
        '--device',
        type=str,
        default='gpu',
        help='gpu or cpu, default use gpu.')
    parser.add_argument(
        '--weights',
        type=str,
D
dengkaipeng 已提交
56
        default=None,
H
huangjun12 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
        help='weight path, None to automatically download weights provided by Paddle.'
    )
    parser.add_argument(
        '--log_interval',
        type=int,
        default=1,
        help='mini-batch interval to log.')
    args = parser.parse_args()
    return args


# Performance Evaluation
def test_bmn(args):
    # only support dynamic mode at present time
    device = set_device(args.device)
    fluid.enable_dygraph(device) if args.dynamic else None

    config = parse_config(args.config_file)
    eval_cfg = merge_configs(config, 'test', vars(args))
    if not os.path.isdir(config.TEST.output_path):
        os.makedirs(config.TEST.output_path)
    if not os.path.isdir(config.TEST.result_path):
        os.makedirs(config.TEST.result_path)

    inputs = [
        Input(
            [None, config.MODEL.feat_dim, config.MODEL.tscale],
            'float32',
            name='feat_input')
    ]
    gt_iou_map = Input(
        [None, config.MODEL.dscale, config.MODEL.tscale],
        'float32',
        name='gt_iou_map')
    gt_start = Input([None, config.MODEL.tscale], 'float32', name='gt_start')
    gt_end = Input([None, config.MODEL.tscale], 'float32', name='gt_end')
    video_idx = Input([None, 1], 'int64', name='video_idx')
    labels = [gt_iou_map, gt_start, gt_end, video_idx]

    #data
    eval_dataset = BmnDataset(eval_cfg, 'test')

    #model
D
dengkaipeng 已提交
100
    model = bmn(config, pretrained=args.weights is None)
H
huangjun12 已提交
101 102 103 104 105 106 107 108 109
    model.prepare(
        loss_function=BmnLoss(config),
        metrics=BmnMetric(
            config, mode='test'),
        inputs=inputs,
        labels=labels,
        device=device)

    #load checkpoint
D
dengkaipeng 已提交
110
    if args.weights is not None:
H
huangjun12 已提交
111 112
        assert os.path.exists(args.weights + '.pdparams'), \
            "Given weight dir {} not exist.".format(args.weights)
D
dengkaipeng 已提交
113 114
        logger.info('load test weights from {}'.format(args.weights))
        model.load(args.weights)
H
huangjun12 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127

    model.evaluate(
        eval_data=eval_dataset,
        batch_size=eval_cfg.TEST.batch_size,
        num_workers=eval_cfg.TEST.num_workers,
        log_freq=args.log_interval)

    logger.info("[EVAL] eval finished")


if __name__ == '__main__':
    args = parse_args()
    test_bmn(args)