modeling.py 17.0 KB
Newer Older
H
huangjun12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#  Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import paddle.fluid as fluid
from paddle.fluid import ParamAttr
import numpy as np
import math

L
LielinJiang 已提交
20 21 22
from paddle.incubate.hapi.model import Model
from paddle.incubate.hapi.loss import Loss
from paddle.incubate.hapi.download import get_weights_path_from_url
23

D
dengkaipeng 已提交
24
__all__ = ["BMN", "BmnLoss", "bmn"]
H
huangjun12 已提交
25 26 27

DATATYPE = 'float32'

D
dengkaipeng 已提交
28 29
pretrain_infos = {
    'bmn': ('https://paddlemodels.bj.bcebos.com/hapi/bmn.pdparams',
D
dengkaipeng 已提交
30
            'aa84e3386e1fbd117fb96fa572feeb94')
D
dengkaipeng 已提交
31 32
}

H
huangjun12 已提交
33

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
def _get_interp1d_bin_mask(seg_xmin, seg_xmax, tscale, num_sample,
                           num_sample_perbin):
    """ generate sample mask for a boundary-matching pair """
    plen = float(seg_xmax - seg_xmin)
    plen_sample = plen / (num_sample * num_sample_perbin - 1.0)
    total_samples = [
        seg_xmin + plen_sample * ii
        for ii in range(num_sample * num_sample_perbin)
    ]
    p_mask = []
    for idx in range(num_sample):
        bin_samples = total_samples[idx * num_sample_perbin:(idx + 1) *
                                    num_sample_perbin]
        bin_vector = np.zeros([tscale])
        for sample in bin_samples:
            sample_upper = math.ceil(sample)
            sample_decimal, sample_down = math.modf(sample)
            if int(sample_down) <= (tscale - 1) and int(sample_down) >= 0:
                bin_vector[int(sample_down)] += 1 - sample_decimal
            if int(sample_upper) <= (tscale - 1) and int(sample_upper) >= 0:
                bin_vector[int(sample_upper)] += sample_decimal
        bin_vector = 1.0 / num_sample_perbin * bin_vector
        p_mask.append(bin_vector)
    p_mask = np.stack(p_mask, axis=1)
    return p_mask


def get_interp1d_mask(tscale, dscale, prop_boundary_ratio, num_sample,
                      num_sample_perbin):
    """ generate sample mask for each point in Boundary-Matching Map """
    mask_mat = []
    for start_index in range(tscale):
        mask_mat_vector = []
        for duration_index in range(dscale):
            if start_index + duration_index < tscale:
                p_xmin = start_index
                p_xmax = start_index + duration_index
                center_len = float(p_xmax - p_xmin) + 1
                sample_xmin = p_xmin - center_len * prop_boundary_ratio
                sample_xmax = p_xmax + center_len * prop_boundary_ratio
                p_mask = _get_interp1d_bin_mask(sample_xmin, sample_xmax,
                                                tscale, num_sample,
                                                num_sample_perbin)
            else:
                p_mask = np.zeros([tscale, num_sample])
            mask_mat_vector.append(p_mask)
        mask_mat_vector = np.stack(mask_mat_vector, axis=2)
        mask_mat.append(mask_mat_vector)
    mask_mat = np.stack(mask_mat, axis=3)
    mask_mat = mask_mat.astype(np.float32)

    sample_mask = np.reshape(mask_mat, [tscale, -1])
    return sample_mask


H
huangjun12 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
# Net
class Conv1D(fluid.dygraph.Layer):
    def __init__(self,
                 prefix,
                 num_channels=256,
                 num_filters=256,
                 size_k=3,
                 padding=1,
                 groups=1,
                 act="relu"):
        super(Conv1D, self).__init__()
        fan_in = num_channels * size_k * 1
        k = 1. / math.sqrt(fan_in)
        param_attr = ParamAttr(
            name=prefix + "_w",
            initializer=fluid.initializer.Uniform(
                low=-k, high=k))
        bias_attr = ParamAttr(
            name=prefix + "_b",
            initializer=fluid.initializer.Uniform(
                low=-k, high=k))

        self._conv2d = fluid.dygraph.Conv2D(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=(1, size_k),
            stride=1,
            padding=(0, padding),
            groups=groups,
            act=act,
            param_attr=param_attr,
            bias_attr=bias_attr)

    def forward(self, x):
        x = fluid.layers.unsqueeze(input=x, axes=[2])
        x = self._conv2d(x)
        x = fluid.layers.squeeze(input=x, axes=[2])
        return x


class BMN(Model):
D
dengkaipeng 已提交
130 131 132 133
    """BMN model from
    `"BMN: Boundary-Matching Network for Temporal Action Proposal Generation" <https://arxiv.org/abs/1907.09702>`_

    Args:
H
huangjun12 已提交
134 135 136 137 138
        tscale (int): sequence length, default 100.
        dscale (int): max duration length, default 100.
        prop_boundary_ratio (float): ratio of expanded temporal region in proposal boundary, default 0.5. 
        num_sample (int): number of samples betweent starting boundary and ending boundary of each propoasl, default 32.
        num_sample_perbin (int):  number of selected points in each sample, default 3.
D
dengkaipeng 已提交
139
    """
H
huangjun12 已提交
140 141 142

    def __init__(self, tscale, dscale, prop_boundary_ratio, num_sample,
                 num_sample_perbin):
H
huangjun12 已提交
143 144 145
        super(BMN, self).__init__()

        #init config
H
huangjun12 已提交
146 147 148 149 150
        self.tscale = tscale
        self.dscale = dscale
        self.prop_boundary_ratio = prop_boundary_ratio
        self.num_sample = num_sample
        self.num_sample_perbin = num_sample_perbin
H
huangjun12 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

        self.hidden_dim_1d = 256
        self.hidden_dim_2d = 128
        self.hidden_dim_3d = 512

        # Base Module
        self.b_conv1 = Conv1D(
            prefix="Base_1",
            num_channels=400,
            num_filters=self.hidden_dim_1d,
            size_k=3,
            padding=1,
            groups=4,
            act="relu")
        self.b_conv2 = Conv1D(
            prefix="Base_2",
            num_filters=self.hidden_dim_1d,
            size_k=3,
            padding=1,
            groups=4,
            act="relu")

        # Temporal Evaluation Module
        self.ts_conv1 = Conv1D(
            prefix="TEM_s1",
            num_filters=self.hidden_dim_1d,
            size_k=3,
            padding=1,
            groups=4,
            act="relu")
        self.ts_conv2 = Conv1D(
            prefix="TEM_s2", num_filters=1, size_k=1, padding=0, act="sigmoid")
        self.te_conv1 = Conv1D(
            prefix="TEM_e1",
            num_filters=self.hidden_dim_1d,
            size_k=3,
            padding=1,
            groups=4,
            act="relu")
        self.te_conv2 = Conv1D(
            prefix="TEM_e2", num_filters=1, size_k=1, padding=0, act="sigmoid")

        #Proposal Evaluation Module
        self.p_conv1 = Conv1D(
            prefix="PEM_1d",
            num_filters=self.hidden_dim_2d,
            size_k=3,
            padding=1,
            act="relu")

H
huangjun12 已提交
201
        # get sample mask 
H
huangjun12 已提交
202 203 204
        sample_mask_array = get_interp1d_mask(
            self.tscale, self.dscale, self.prop_boundary_ratio,
            self.num_sample, self.num_sample_perbin)
H
huangjun12 已提交
205 206 207 208 209 210 211
        self.sample_mask = fluid.layers.create_parameter(
            shape=[self.tscale, self.num_sample * self.dscale * self.tscale],
            dtype=DATATYPE,
            attr=fluid.ParamAttr(
                name="sample_mask", trainable=False),
            default_initializer=fluid.initializer.NumpyArrayInitializer(
                sample_mask_array))
H
huangjun12 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291

        self.sample_mask.stop_gradient = True

        self.p_conv3d1 = fluid.dygraph.Conv3D(
            num_channels=128,
            num_filters=self.hidden_dim_3d,
            filter_size=(self.num_sample, 1, 1),
            stride=(self.num_sample, 1, 1),
            padding=0,
            act="relu",
            param_attr=ParamAttr(name="PEM_3d1_w"),
            bias_attr=ParamAttr(name="PEM_3d1_b"))

        self.p_conv2d1 = fluid.dygraph.Conv2D(
            num_channels=512,
            num_filters=self.hidden_dim_2d,
            filter_size=1,
            stride=1,
            padding=0,
            act="relu",
            param_attr=ParamAttr(name="PEM_2d1_w"),
            bias_attr=ParamAttr(name="PEM_2d1_b"))
        self.p_conv2d2 = fluid.dygraph.Conv2D(
            num_channels=128,
            num_filters=self.hidden_dim_2d,
            filter_size=3,
            stride=1,
            padding=1,
            act="relu",
            param_attr=ParamAttr(name="PEM_2d2_w"),
            bias_attr=ParamAttr(name="PEM_2d2_b"))
        self.p_conv2d3 = fluid.dygraph.Conv2D(
            num_channels=128,
            num_filters=self.hidden_dim_2d,
            filter_size=3,
            stride=1,
            padding=1,
            act="relu",
            param_attr=ParamAttr(name="PEM_2d3_w"),
            bias_attr=ParamAttr(name="PEM_2d3_b"))
        self.p_conv2d4 = fluid.dygraph.Conv2D(
            num_channels=128,
            num_filters=2,
            filter_size=1,
            stride=1,
            padding=0,
            act="sigmoid",
            param_attr=ParamAttr(name="PEM_2d4_w"),
            bias_attr=ParamAttr(name="PEM_2d4_b"))

    def forward(self, x):
        #Base Module
        x = self.b_conv1(x)
        x = self.b_conv2(x)

        #TEM
        xs = self.ts_conv1(x)
        xs = self.ts_conv2(xs)
        xs = fluid.layers.squeeze(xs, axes=[1])
        xe = self.te_conv1(x)
        xe = self.te_conv2(xe)
        xe = fluid.layers.squeeze(xe, axes=[1])

        #PEM
        xp = self.p_conv1(x)
        #BM layer
        xp = fluid.layers.matmul(xp, self.sample_mask)
        xp = fluid.layers.reshape(
            xp, shape=[0, 0, -1, self.dscale, self.tscale])

        xp = self.p_conv3d1(xp)
        xp = fluid.layers.squeeze(xp, axes=[2])
        xp = self.p_conv2d1(xp)
        xp = self.p_conv2d2(xp)
        xp = self.p_conv2d3(xp)
        xp = self.p_conv2d4(xp)
        return xp, xs, xe


class BmnLoss(Loss):
D
dengkaipeng 已提交
292 293 294
    """Loss for BMN model

    Args:
H
huangjun12 已提交
295 296
        tscale (int): sequence length, default 100.
        dscale (int): max duration length, default 100.
D
dengkaipeng 已提交
297
    """
H
huangjun12 已提交
298 299

    def __init__(self, tscale, dscale):
H
huangjun12 已提交
300
        super(BmnLoss, self).__init__()
H
huangjun12 已提交
301 302
        self.tscale = tscale
        self.dscale = dscale
H
huangjun12 已提交
303 304 305

    def _get_mask(self):
        bm_mask = []
H
huangjun12 已提交
306 307
        for idx in range(self.dscale):
            mask_vector = [1 for i in range(self.tscale - idx)
H
huangjun12 已提交
308 309 310 311
                           ] + [0 for i in range(idx)]
            bm_mask.append(mask_vector)
        bm_mask = np.array(bm_mask, dtype=np.float32)
        self_bm_mask = fluid.layers.create_global_var(
H
huangjun12 已提交
312 313 314 315
            shape=[self.dscale, self.tscale],
            value=0,
            dtype=DATATYPE,
            persistable=True)
H
huangjun12 已提交
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
        fluid.layers.assign(bm_mask, self_bm_mask)
        self_bm_mask.stop_gradient = True
        return self_bm_mask

    def tem_loss_func(self, pred_start, pred_end, gt_start, gt_end):
        def bi_loss(pred_score, gt_label):
            pred_score = fluid.layers.reshape(
                x=pred_score, shape=[-1], inplace=False)
            gt_label = fluid.layers.reshape(
                x=gt_label, shape=[-1], inplace=False)
            gt_label.stop_gradient = True
            pmask = fluid.layers.cast(x=(gt_label > 0.5), dtype=DATATYPE)
            num_entries = fluid.layers.cast(
                fluid.layers.shape(pmask), dtype=DATATYPE)
            num_positive = fluid.layers.cast(
                fluid.layers.reduce_sum(pmask), dtype=DATATYPE)
            ratio = num_entries / num_positive
            coef_0 = 0.5 * ratio / (ratio - 1)
            coef_1 = 0.5 * ratio
            epsilon = 0.000001
            temp = fluid.layers.log(pred_score + epsilon)
            loss_pos = fluid.layers.elementwise_mul(
                fluid.layers.log(pred_score + epsilon), pmask)
            loss_pos = coef_1 * fluid.layers.reduce_mean(loss_pos)
            loss_neg = fluid.layers.elementwise_mul(
                fluid.layers.log(1.0 - pred_score + epsilon), (1.0 - pmask))
            loss_neg = coef_0 * fluid.layers.reduce_mean(loss_neg)
            loss = -1 * (loss_pos + loss_neg)
            return loss

        loss_start = bi_loss(pred_start, gt_start)
        loss_end = bi_loss(pred_end, gt_end)
        loss = loss_start + loss_end
        return loss

    def pem_reg_loss_func(self, pred_score, gt_iou_map, mask):

        gt_iou_map = fluid.layers.elementwise_mul(gt_iou_map, mask)

        u_hmask = fluid.layers.cast(x=gt_iou_map > 0.7, dtype=DATATYPE)
        u_mmask = fluid.layers.logical_and(gt_iou_map <= 0.7, gt_iou_map > 0.3)
        u_mmask = fluid.layers.cast(x=u_mmask, dtype=DATATYPE)
        u_lmask = fluid.layers.logical_and(gt_iou_map <= 0.3, gt_iou_map >= 0.)
        u_lmask = fluid.layers.cast(x=u_lmask, dtype=DATATYPE)
        u_lmask = fluid.layers.elementwise_mul(u_lmask, mask)

        num_h = fluid.layers.cast(
            fluid.layers.reduce_sum(u_hmask), dtype=DATATYPE)
        num_m = fluid.layers.cast(
            fluid.layers.reduce_sum(u_mmask), dtype=DATATYPE)
        num_l = fluid.layers.cast(
            fluid.layers.reduce_sum(u_lmask), dtype=DATATYPE)

        r_m = num_h / num_m
        u_smmask = fluid.layers.uniform_random(
            shape=[gt_iou_map.shape[1], gt_iou_map.shape[2]],
            dtype=DATATYPE,
            min=0.0,
            max=1.0)
        u_smmask = fluid.layers.elementwise_mul(u_mmask, u_smmask)
        u_smmask = fluid.layers.cast(x=(u_smmask > (1. - r_m)), dtype=DATATYPE)

        r_l = num_h / num_l
        u_slmask = fluid.layers.uniform_random(
            shape=[gt_iou_map.shape[1], gt_iou_map.shape[2]],
            dtype=DATATYPE,
            min=0.0,
            max=1.0)
        u_slmask = fluid.layers.elementwise_mul(u_lmask, u_slmask)
        u_slmask = fluid.layers.cast(x=(u_slmask > (1. - r_l)), dtype=DATATYPE)

        weights = u_hmask + u_smmask + u_slmask
        weights.stop_gradient = True
        loss = fluid.layers.square_error_cost(pred_score, gt_iou_map)
        loss = fluid.layers.elementwise_mul(loss, weights)
        loss = 0.5 * fluid.layers.reduce_sum(loss) / fluid.layers.reduce_sum(
            weights)

        return loss

    def pem_cls_loss_func(self, pred_score, gt_iou_map, mask):
        gt_iou_map = fluid.layers.elementwise_mul(gt_iou_map, mask)
        gt_iou_map.stop_gradient = True
        pmask = fluid.layers.cast(x=(gt_iou_map > 0.9), dtype=DATATYPE)
        nmask = fluid.layers.cast(x=(gt_iou_map <= 0.9), dtype=DATATYPE)
        nmask = fluid.layers.elementwise_mul(nmask, mask)

        num_positive = fluid.layers.reduce_sum(pmask)
        num_entries = num_positive + fluid.layers.reduce_sum(nmask)
        ratio = num_entries / num_positive
        coef_0 = 0.5 * ratio / (ratio - 1)
        coef_1 = 0.5 * ratio
        epsilon = 0.000001
        loss_pos = fluid.layers.elementwise_mul(
            fluid.layers.log(pred_score + epsilon), pmask)
        loss_pos = coef_1 * fluid.layers.reduce_sum(loss_pos)
        loss_neg = fluid.layers.elementwise_mul(
            fluid.layers.log(1.0 - pred_score + epsilon), nmask)
        loss_neg = coef_0 * fluid.layers.reduce_sum(loss_neg)
        loss = -1 * (loss_pos + loss_neg) / num_entries
        return loss

    def forward(self, outputs, labels):
        pred_bm, pred_start, pred_end = outputs
        if len(labels) == 3:
            gt_iou_map, gt_start, gt_end = labels
        elif len(labels) == 4:  # video_index used in eval mode
            gt_iou_map, gt_start, gt_end, video_index = labels
        pred_bm_reg = fluid.layers.squeeze(
            fluid.layers.slice(
                pred_bm, axes=[1], starts=[0], ends=[1]),
            axes=[1])
        pred_bm_cls = fluid.layers.squeeze(
            fluid.layers.slice(
                pred_bm, axes=[1], starts=[1], ends=[2]),
            axes=[1])

        bm_mask = self._get_mask()

        pem_reg_loss = self.pem_reg_loss_func(pred_bm_reg, gt_iou_map, bm_mask)
        pem_cls_loss = self.pem_cls_loss_func(pred_bm_cls, gt_iou_map, bm_mask)

        tem_loss = self.tem_loss_func(pred_start, pred_end, gt_start, gt_end)

        loss = tem_loss + 10 * pem_reg_loss + pem_cls_loss
        return loss
D
dengkaipeng 已提交
442 443


H
huangjun12 已提交
444 445 446 447 448 449
def bmn(tscale,
        dscale,
        prop_boundary_ratio,
        num_sample,
        num_sample_perbin,
        pretrained=True):
D
dengkaipeng 已提交
450 451 452
    """BMN model
    
    Args:
H
huangjun12 已提交
453 454 455 456 457 458
        tscale (int): sequence length, default 100.
        dscale (int): max duration length, default 100.
        prop_boundary_ratio (float): ratio of expanded temporal region in proposal boundary, default 0.5. 
        num_sample (int): number of samples betweent starting boundary and ending boundary of each propoasl, default 32.
        num_sample_perbin (int):  number of selected points in each sample, default 3.
        pretrained (bool): If True, returns a model with pre-trained model, default True.
D
dengkaipeng 已提交
459
    """
H
huangjun12 已提交
460 461
    model = BMN(tscale, dscale, prop_boundary_ratio, num_sample,
                num_sample_perbin)
D
dengkaipeng 已提交
462
    if pretrained:
L
LielinJiang 已提交
463
        weight_path = get_weights_path_from_url(*(pretrain_infos['bmn']))
D
dengkaipeng 已提交
464 465
        assert weight_path.endswith('.pdparams'), \
                "suffix of weight must be .pdparams"
D
dengkaipeng 已提交
466
        model.load(weight_path)
D
dengkaipeng 已提交
467
    return model