infer.py 2.9 KB
Newer Older
D
dengkaipeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import print_function

import os
import argparse
import numpy as np

22 23
from hapi.model import Input, set_device
from hapi.vision.models import tsm_resnet50
D
dengkaipeng 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

from check import check_gpu, check_version
from kinetics_dataset import KineticsDataset
from transforms import *

import logging
logger = logging.getLogger(__name__)


def main():
    device = set_device(FLAGS.device)
    fluid.enable_dygraph(device) if FLAGS.dynamic else None

    transform = Compose([GroupScale(),
                         GroupCenterCrop(),
                         NormalizeImage()])
    dataset = KineticsDataset(
            pickle_file=FLAGS.infer_file,
            label_list=FLAGS.label_list,
            mode='test',
            transform=transform)
    labels = dataset.label_list

    model = tsm_resnet50(num_classes=len(labels),
                         pretrained=FLAGS.weights is None)

    inputs = [Input([None, 8, 3, 224, 224], 'float32', name='image')]

    model.prepare(inputs=inputs, device=FLAGS.device)

    if FLAGS.weights is not None:
        model.load(FLAGS.weights, reset_optimizer=True)

    imgs, label = dataset[0]
    pred = model.test([imgs[np.newaxis, :]])
    pred = labels[np.argmax(pred)]
    logger.info("Sample {} predict label: {}, ground truth label: {}" \
                .format(FLAGS.infer_file, pred, labels[int(label)]))


if __name__ == '__main__':
    parser = argparse.ArgumentParser("CNN training on TSM")
    parser.add_argument(
        "--data", type=str, default='dataset/kinetics',
        help="path to dataset root directory")
    parser.add_argument(
        "--device", type=str, default='gpu',
        help="device to use, gpu or cpu")
    parser.add_argument(
        "-d", "--dynamic", action='store_true',
        help="enable dygraph mode")
    parser.add_argument(
        "--label_list", type=str, default=None,
        help="path to category index label list file")
    parser.add_argument(
        "--infer_file", type=str, default=None,
        help="path to pickle file for inference")
    parser.add_argument(
        "-w",
        "--weights",
        default=None,
        type=str,
        help="weights path for evaluation")
    FLAGS = parser.parse_args()

    check_gpu(str.lower(FLAGS.device) == 'gpu')
    check_version()
    main()