bert_classifier.py 5.8 KB
Newer Older
X
xyzhou-puck 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT fine-tuning in Paddle Dygraph Mode."""

import paddle.fluid as fluid
from hapi.metrics import Accuracy
from hapi.configure import Config
X
xyzhou-puck 已提交
19 20
from hapi.text.bert import BertEncoder
from paddle.fluid.dygraph import Linear, Layer
X
xyzhou-puck 已提交
21 22 23 24 25
from hapi.model import set_device, Model, SoftmaxWithCrossEntropy, Input
import hapi.text.tokenizer.tokenization as tokenization
from hapi.text.bert import Optimizer, BertConfig, BertDataLoader, BertInputExample


X
xyzhou-puck 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
class ClsModelLayer(Model):
    """
    classify model
    """

    def __init__(self,
                 args,
                 config,
                 num_labels,
                 return_pooled_out=True,
                 use_fp16=False):
        super(ClsModelLayer, self).__init__()
        self.config = config
        self.use_fp16 = use_fp16
        self.loss_scaling = args.loss_scaling

        self.bert_layer = BertEncoder(
            config=self.config, return_pooled_out=True, use_fp16=self.use_fp16)

        self.cls_fc = Linear(
            input_dim=self.config["hidden_size"],
            output_dim=num_labels,
            param_attr=fluid.ParamAttr(
                name="cls_out_w",
                initializer=fluid.initializer.TruncatedNormal(scale=0.02)),
            bias_attr=fluid.ParamAttr(
                name="cls_out_b", initializer=fluid.initializer.Constant(0.)))

    def forward(self, src_ids, position_ids, sentence_ids, input_mask):
        """
        forward
        """

        enc_output, next_sent_feat = self.bert_layer(src_ids, position_ids,
                                                     sentence_ids, input_mask)

        cls_feats = fluid.layers.dropout(
            x=next_sent_feat,
            dropout_prob=0.1,
            dropout_implementation="upscale_in_train")

        pred = self.cls_fc(cls_feats)

        return pred


def main():
X
xyzhou-puck 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

    config = Config(yaml_file="./bert.yaml")
    config.build()
    config.Print()

    device = set_device("gpu" if config.use_cuda else "cpu")
    fluid.enable_dygraph(device)

    bert_config = BertConfig(config.bert_config_path)
    bert_config.print_config()

    tokenizer = tokenization.FullTokenizer(
        vocab_file=config.vocab_path, do_lower_case=config.do_lower_case)

    def mnli_line_processor(line_id, line):
        if line_id == "0":
            return None
        uid = tokenization.convert_to_unicode(line[0])
        text_a = tokenization.convert_to_unicode(line[8])
        text_b = tokenization.convert_to_unicode(line[9])
        label = tokenization.convert_to_unicode(line[-1])
        if label not in ["contradiction", "entailment", "neutral"]:
            label = "contradiction"
        return BertInputExample(
            uid=uid, text_a=text_a, text_b=text_b, label=label)

X
xyzhou-puck 已提交
99
    train_dataloader = BertDataLoader(
X
xyzhou-puck 已提交
100 101
        "./data/glue_data/MNLI/train.tsv",
        tokenizer, ["contradiction", "entailment", "neutral"],
X
xyzhou-puck 已提交
102 103
        max_seq_length=config.max_seq_len,
        batch_size=config.batch_size,
X
xyzhou-puck 已提交
104
        line_processor=mnli_line_processor,
X
xyzhou-puck 已提交
105 106
        mode="leveldb",
        phase="train")
X
xyzhou-puck 已提交
107

X
xyzhou-puck 已提交
108 109 110 111 112 113 114 115 116 117 118
    dev_dataloader = BertDataLoader(
        "./data/glue_data/MNLI/dev_matched.tsv",
        tokenizer, ["contradiction", "entailment", "neutral"],
        max_seq_length=config.max_seq_len,
        batch_size=config.batch_size,
        line_processor=mnli_line_processor,
        shuffle=False,
        phase="predict")

    trainer_count = fluid.dygraph.parallel.Env().nranks
    num_train_examples = len(train_dataloader.dataset)
X
xyzhou-puck 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    max_train_steps = config.epoch * num_train_examples // config.batch_size // trainer_count
    warmup_steps = int(max_train_steps * config.warmup_proportion)

    print("Trainer count: %d" % trainer_count)
    print("Num train examples: %d" % num_train_examples)
    print("Max train steps: %d" % max_train_steps)
    print("Num warmup steps: %d" % warmup_steps)

    inputs = [
        Input(
            [None, None], 'int64', name='src_ids'), Input(
                [None, None], 'int64', name='pos_ids'), Input(
                    [None, None], 'int64', name='sent_ids'), Input(
                        [None, None], 'float32', name='input_mask')
    ]

    labels = [Input([None, 1], 'int64', name='label')]

    cls_model = ClsModelLayer(
        config,
        bert_config,
        len(["contradiction", "entailment", "neutral"]),
        return_pooled_out=True)

    optimizer = Optimizer(
        warmup_steps=warmup_steps,
        num_train_steps=max_train_steps,
        learning_rate=config.learning_rate,
        model_cls=cls_model,
        weight_decay=config.weight_decay,
        scheduler=config.lr_scheduler,
        loss_scaling=config.loss_scaling,
        parameter_list=cls_model.parameters())

    cls_model.prepare(
        optimizer,
        SoftmaxWithCrossEntropy(),
        Accuracy(topk=(1, 2)),
        inputs,
        labels,
        device=device)

    cls_model.bert_layer.init_parameters(
        config.init_pretraining_params, verbose=config.verbose)

X
xyzhou-puck 已提交
164 165 166 167
    # do train
    cls_model.fit(train_data=train_dataloader.dataloader,
                  epochs=config.epoch,
                  save_dir=config.checkpoints)
X
xyzhou-puck 已提交
168

X
xyzhou-puck 已提交
169 170 171
    # do eval
    cls_model.evaluate(
        eval_data=test_dataloader.dataloader, batch_size=config.batch_size)
X
xyzhou-puck 已提交
172 173 174


if __name__ == '__main__':
X
xyzhou-puck 已提交
175
    main()