main.py 4.7 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import print_function

import argparse
import contextlib
import os
import sys
sys.path.append('../')

import time
import math
import numpy as np
import models
import paddle.fluid as fluid

from model import CrossEntropy, Input, set_device
from imagenet_dataset import ImageNetDataset
from distributed import DistributedBatchSampler
from paddle.fluid.dygraph.parallel import ParallelEnv
from metrics import Accuracy
from paddle.fluid.io import BatchSampler, DataLoader


def make_optimizer(step_per_epoch, parameter_list=None):
    base_lr = FLAGS.lr
    momentum = 0.9
    weight_decay = 1e-4

    boundaries = [step_per_epoch * e for e in [30, 60, 90]]
    values = [base_lr * (0.1**i) for i in range(len(boundaries) + 1)]
    learning_rate = fluid.layers.piecewise_decay(
        boundaries=boundaries, values=values)
    learning_rate = fluid.layers.linear_lr_warmup(
        learning_rate=learning_rate,
        warmup_steps=5 * step_per_epoch,
        start_lr=0.,
        end_lr=base_lr)
    optimizer = fluid.optimizer.Momentum(
        learning_rate=learning_rate,
        momentum=momentum,
        regularization=fluid.regularizer.L2Decay(weight_decay),
        parameter_list=parameter_list)
    return optimizer


def main():
    device = set_device(FLAGS.device)
    fluid.enable_dygraph(device) if FLAGS.dynamic else None

    model = models.__dict__[FLAGS.arch](pretrained=FLAGS.eval_only)

    if FLAGS.resume is not None:
        model.load(FLAGS.resume)

    inputs = [Input([None, 3, 224, 224], 'float32', name='image')]
    labels = [Input([None, 1], 'int64', name='label')]

    train_dataset = ImageNetDataset(
        os.path.join(FLAGS.data, 'train'), mode='train')
    val_dataset = ImageNetDataset(os.path.join(FLAGS.data, 'val'), mode='val')

    optim = make_optimizer(
        np.ceil(
            len(train_dataset) * 1. / FLAGS.batch_size / ParallelEnv().nranks),
        parameter_list=model.parameters())

    model.prepare(optim, CrossEntropy(), Accuracy(topk=(1, 5)), inputs, labels)

    if FLAGS.eval_only:
        model.evaluate(
            val_dataset,
            batch_size=FLAGS.batch_size,
            num_workers=FLAGS.num_workers)
        return

    output_dir = os.path.join(FLAGS.output_dir, FLAGS.arch,
                              time.strftime('%Y-%m-%d-%H-%M',
                                            time.localtime()))
    if ParallelEnv().local_rank == 0 and not os.path.exists(output_dir):
        os.makedirs(output_dir)

    model.fit(train_dataset,
              val_dataset,
              batch_size=FLAGS.batch_size,
              epochs=FLAGS.epoch,
              save_dir=output_dir,
              num_workers=FLAGS.num_workers)


if __name__ == '__main__':
    parser = argparse.ArgumentParser("Resnet Training on ImageNet")
    parser.add_argument(
        'data',
        metavar='DIR',
        help='path to dataset '
        '(should have subdirectories named "train" and "val"')
    parser.add_argument(
        "--arch", type=str, default='resnet50', help="model name")
    parser.add_argument(
        "--device", type=str, default='gpu', help="device to run, cpu or gpu")
    parser.add_argument(
        "-d", "--dynamic", action='store_true', help="enable dygraph mode")
    parser.add_argument(
        "-e", "--epoch", default=120, type=int, help="number of epoch")
    parser.add_argument(
        '--lr',
        '--learning-rate',
        default=0.1,
        type=float,
        metavar='LR',
        help='initial learning rate')
    parser.add_argument(
        "-b", "--batch-size", default=64, type=int, help="batch size")
    parser.add_argument(
        "-n", "--num-workers", default=4, type=int, help="dataloader workers")
    parser.add_argument(
        "--output-dir", type=str, default='output', help="save dir")
    parser.add_argument(
        "-r",
        "--resume",
        default=None,
        type=str,
        help="checkpoint path to resume")
    parser.add_argument(
        "--eval-only", action='store_true', help="enable dygraph mode")
    FLAGS = parser.parse_args()
    assert FLAGS.data, "error: must provide data path"
    main()